
Informatik_Spektrum_23_April_2004 1

HAUPTBEITRAG / WEB SERVICES-ORIENTED ARCHITECTURE }

The advanced require-
ments of this system,
e.g. heterogeneous 
client environment,
sub-second response
times, 300% traffic 
growth, and interface
complexity, challenged
today’s Web services
implementations. To
achieve true interoper-
ability between MS 
Office XP/.NET and the
Java world and to de-
sign an SOAP envelope
compression scheme
were two of the most

important issues that had to be solved.
This paper discusses the rationale behind

Sparkassen Informatik’s decision for Web services,
and gives an architectural overview of the integra-
tion approach. Furthermore, it features the lessons
learned during the implementation of this enter-
prise–scale solution.

1 Introduction
This paper structured into six main sections. The
introduction sketches the business problem and 
resulting requirements. In Sect. 2, we explain the
Web services value proposition in this scenario.
After that, we outline the solution architecture on 
a rather high conceptual level.

In Sect. 4, the project approach and results are
discussed, while Sect. 5 features the lessons we 
learned and the best practices we identified during

the project. The final section contains our conclu-
sions and gives an outlook to future work.

1.1 Sparkassen Informatik: a full service
provider for 236 financial institutes

Sparkassen Informatik GmbH & Co. KG [14] plays 
a major role in providing information technology
(IT) services to many German savings banks
(“Sparkassen”). It is the largest service and data
centre in the Sparkassen Finanzgruppe in Germany,
providing services to 236 individual savings banks.
To satisfy the individual business and technical 
requirements of these banks, Sparkassen Infor-
matik provides them with standard and optional
service offerings as well as with unified interfaces
to common business transactions.

As such, Sparkassen Informatik is a complete
solution provider hosting mission-critical enter-
prise applications and data stores for the savings
banks. At the heart of Sparkassen Informatik’s solu-
tion stack is their real-time transactional core
banking solution, based on a CICS® transaction
monitor and a DB2®
database management
system located in a
centralized z/OS back-
end. Furthermore,
Sparkassen Informatik
allows its customers
and partners to flexi-
bly integrate other 
applications, which are
either developed indi-
vidually or procured
on the market place.

Web services-oriented 
architecture in production 
in the finance industry

Michael Brandner · Michael Craes ·
Frank Oellermann · Olaf Zimmermann

DOI 10.1007/s00287-004-0380-2
© Springer-Verlag 2004

M. Brandner
IBM Financial Sector,
Münster, Germany
e-mail: brandner@de.ibm.com

M. Craes · F. Oellermann
Sparkassen Informatik GmbH,
Münster, Germany
e-mail: michael.craes@sparkassen-informatik.de
frank.oellermann@sparkassen-informatik.de

O. Zimmermann
IBM Enterprise Integration Solutions,
Heidelberg, Germany
e-mail: ozimmer@de.ibm.com

Effective and affordable
business process 

integration is key in the
finance industry. With
the help of IBM Global
Services and IBM Soft-

ware Group, Sparkassen
Informatik, a large 

German joint-use centre
supplying services to

236 individual savings
banks, enhanced the 

integration capabilities
of its core banking

system (500+ complex
functions) through 

aggressive use of Web
services.



WEB SERVICES-ORIENTED ARCHITECTURE}

Informatik_Spektrum_23_April_20042

The resulting business model, Sparkassen 
Informatik acting as a shared service provider for
many different service requestors (the savings
banks), inherently leads to a highly distributed,
heterogeneous overall IT infrastructure and appli-
cation landscape. Sparkassen Informatik therefore
has to solve the following integration challenges:

· Fast, effective business process integration between
Sparkassen Informatik and its customers, the savings banks,
is the overall goal in this context.

· To achieve this integration, efficient frontend to backend 
connectivity is required – the savings banks operate the
end-user frontend applications, Sparkassen Informatik 
provides the core banking backend.

· The centralized backend has to deal with a highly hetero-
geneous frontend landscape, as the savings banks decide 
for programming languages and runtime platforms inde-
pendently of each other.

· Finally, it must be possible to seamlessly integrate best-
of-breed software solutions available from Independent Soft-
ware Vendors (ISVs).

1.2 Dynamic Interface: a service-oriented
integration architecture

Sparkassen Informatik’s strategic response to the
integration challenges identified in Sect. 1.1 is a
comprehensive integration and connector architec-
ture called Dynamic Interface (“Dynamische
Schnittstelle”). The Dynamic Interface provides
standardized and flexible access to a collection of
business functions, which are implemented in the
backend core banking system. This offering is a 
key differentiator for Sparkassen Informatik, be-
cause it offers savings banks and ISVs a highly 
convenient way to connect frontend applications 
to the core banking backend.

The Dynamic Interface consists of two abstrac-
tion layers:

· A protocol interface and access layer called technology 
platform

· The application layer providing the core banking functions

The technology platform is the glue between client
applications and the business functions; the con-
crete function invocation Application Program-
ming Interface (API) and transport protocol map-
ping are defined on this layer. For each supported
client environment and distribution mechanism,

there is a separate technology platform (layer). For
example, there are technology layers providing sup-
port for Java and a proprietary Remote Procedure
Call (RPC) mechanism offering a C API.

The application layer consists of a large set of
banking-specific functions, which we refer to as
processes. Process granularity ranges from Create,
Read, Update, Delete (CRUD) operations on core
entities such as Person, Account, Contract, or
Product, to search facilities and more complete use
cases such as portfolio overviews, risk calculations
and cross-selling functions.

This modular, two-layered interface design 
allows decoupling the business-oriented application
layer from concrete implementation platform.
In the case that an additional client programming
model has to be supported, only the technology
platform is affected.

In summary, the Dynamic Interface solution
was established for the integration of client/server
applications developed by Sparkassen Informatik.
In addition, some savings banks needed to flexibly
integrate their own applications purchased from
ISVs. Due to the fact that these applications are 
selected by the savings banks based on the provid-
ed functionality rather than the supported plat-
forms, the Dynamic Interface has to support a 
heterogeneous IT environment and to maintain
multiple server-side interfaces.

1.3 Challenges and issues
As we have outlined in Sect. 1.2, until the arrival 
of Web services as an architecture alternative,
separate technology platform layer instantiations
had to be available to support multiple client 
programming languages and platforms.

However, it is desirable to minimize the 
number of required technology layers, as the devel-
opment and maintenance of server-side support 
for several different distributed computing tech-
nologies is an expensive undertaking. Concepts
such as interface description format, service nam-
ing, transport protocols, data (un)marshalling 
and tooling differ from platform to platform, and
typically the learning curve to gain all required
skills is rather steep.

Furthermore, Sparkassen Informatik is not –
and does not want to be – a middleware platform
vendor. However, the introduction of any home-
grown integration solution makes it necessary to



Informatik_Spektrum_23_April_2004 3

develop tools such as interface description brow-
sers, stub generators and test clients in addition 
to the runtime integration solution. A solution built
on standards makes it possible to buy rather than
build such tools.

Finally, the continuous competition in the 
finance industry is a driving force for the savings
banks to enhance the integration facilities to inter-
act with their partners. Upcoming business models
require that business processes can interact 
dynamically across enterprises. For example, many
savings banks offer third-party insurance products.
Just-in-time access to such insurance policies,
which are processed by external insurance compa-
nies, must therefore be supported.

These issues forced Sparkassen Informatik to
look for a new approach based on open standards.
In a joint effort with IBM Software Group and IBM
Global Services, Sparkassen Informatik decided to
evaluate the potential benefits of Web services 
technology1.

2 Vision and requirements
Since 1996, Sparkassen Informatik had attempted 
to consolidate the solution so that only one inter-
face technology could support multiple client plat-
forms. All previously existing technologies – such
as a proprietary communication protocol, (D)COM,
CORBA, Java, and a home-grown HTTP/XML solu-
tion – could either not fulfil this vision or did not
meet all requirements of a truly Services-Oriented
Architecture (SOA).

In contrast, Web services can be characterized
as self-contained, modular applications that can be
described, published, located and invoked over a
common Web-based infrastructure defined by open
standards [15]. An early investigation of the Web
Services Description Language (WSDL) [17] showed
that its modular structure, for example distinguish-
ing between abstract port types and concrete 
protocol bindings, nicely mirrors the two-layered
design of the Dynamic Interface (see Sect. 1.2).

Moreover, SOAP [13], the underlying messaging
format, is designed to be platform- and implemen-
tation-neutral, and is built on already established

internet standards (HTTP, XML). We detected that
in combination with WSDL, which provides a for-
mal interface and access specification, SOAP would
be able to improve the existing solutions. In com-
bination, WSDL and an SOAP service provider 
comprise the desired, unified and standards-based
architecture supported by commercially off-the-
shelf tooling.

2.1 High-level requirements
As mentioned earlier, we evaluated the Web ser-
vices technology with the intention of improving
the Dynamic Interface access technologies. The
main goals and requirements for the new Web ser-
vices-based architecture therefore were:

· Minimize the number of required interfaces and middle-tier
implementations to support the different existing client
component and interface technologies

· Reduce the development effort for the savings banks by
minimizing the interface complexity through encapsulation
and better integration into existing development tools

· Improve the interface documentation of the existing 
proprietary HTTP/XML messaging interface, following the
design-by-contract philosophy

· Reduce the volume of data transferred between requester
and server

Moreover, the following Non-Functional Require-
ments (NFRs) had to be addressed:

· Heterogeneous service requestor (client) environment 
in terms of platforms and programming languages,
including Java and Java 2 Enterprise Edition (J2EE),

Microsoft .NET C#, Microsoft .NET Visual Basic and Visual
Basic 6, Perl/PHP.

· Sub-second response times have to be achieved, even if 
network capacity is low, e.g. 64-kbit ISDN telephone line 
in rural areas (some application clients are directly used 
by customer facing staff ).

· Scalability is a must-have, as a 300% traffic growth for the
Dynamic Interface was observed in recent years (organic
growth, mergers).

· And, of course, just as in any other enterprise-level scenario,
security requirements such as authentication, authorization,
integrity and confidentiality have to be met (sensitive data
are transferred).

· Finally, the envisioned solution has to have excellent 
interoperability, performance and development efficiency
characteristics.

1 A high increase in the efficiency of IT development projects through the exten-
sive use of Web services was expected. Furthermore, we anticipated that Web 
services software components – interacting with one another dynamically via
standard Internet technologies – would make it possible to connect IT systems
whose integration otherwise would require extensive development effort.



WEB SERVICES-ORIENTED ARCHITECTURE}

Informatik_Spektrum_23_April_20044

In Sect. 3 we will describe how we map the vision
and address these requirements in our solution 
architecture. However, before doing so, let us first
assess how our scenario positions in an overall Web
services complexity matrix.

2.2 Scenario complexity
Web services solutions differ – on the low end of
the spectrum, there are simplistic services such as
the ubiquitous getStockQuote example. The
other extreme is fully automated service value
chains, preferably communicating with each other
ad hoc or on demand, as envisioned in vendor strat-
egies such as IBM e-business on demand [8].

Web services solutions in general address
Enterprise Application Integration (EAI) and
Business-to-Business (B2B) scenarios possibly of
Intranet, Extranet and Internet reach. Lower-level
Common Services can also be made available as
Web services – most first-of-a-kind prototypes fall
into this category. Implementation complexity
varies with integration level and services reach.
Figure 1 shows where the Sparkassen Informatik
solution resides in the resulting complexity matrix:

The business functions and the application 
layer of the Dynamic Interface are medium to high-
ly complex in terms of their granularity (refer to
Sect. 1.2 for a few examples). The savings banks 
access the Sparkassen Informatik servers via an 
Intranet, not the Internet. Thus, this solution is a
rather advanced Web services usage scenario.

3 Solution outline
In the autumn of 2001, we started with a conceptual
feasibility study delivering a vision statement,
requirements and project goals as well as success
criteria. Next, we decided to prove the usability and
maturity of Web services implementations in a 
realistic, production-close environment. We there-

fore initiated a Proof of Concept (December 2001 
to February 2002), which was important for risk
minimization, as at project initiation time, Web 
services were still an emerging technology.

The final production solution was designed
and implemented between August and December
2002. In this section, we will highlight its key archi-
tecture elements.

3.1 Key architectural decisions
As outlined in Sect. 2.1, the lack of standard inter-
face documentation was one of the major business
drivers for the project in order to leverage wizards
provided by standard development tools. We ad-
dressed it by introducing WSDL descriptions for
the banking functions. SOAP/HTTP became the
message exchange format connecting the client 
applications with the functions provided by the 
Dynamic Interface.

Automatic WSDL provisioning from the exist-
ing, XML-based function repository is a key feature
of the solution. Due to the widespread acceptance
of the existing, HTML-based repository frontend,
we decided to simply enhance the existing HTML
presentation of each business function with the
corresponding WSDL description. Therefore, there
was no pressing need for introducing a service 
broker such as a Universal Discovery, Description
and Integration (UDDI) repository.

Figure 2 illustrates the resulting three-tiered 
architecture of the resulting overall solution, pro-
viding a single, unified interface to different clients.
It also outlines the key role of the metadata reposi-
tory, which drives code generation for all tiers.

3.2 Interface design: generic vs. generated
The solution architecture could immediately satisfy
requirement one (one interface) and three (improve
documentation) from Sect. 2.1 through the use 
of SOAP and WSDL. To satisfy requirement two 
(reduce the development effort) and four (reduce
network traffic), we had to carefully model the ser-
vice invocation interface, and to decide between 
a model-driven and a generic, document-oriented
design style.

A generic, function-independent API requires
deep knowledge of each business function and 
performs most error checking at runtime. On pre-
vious projects we had gained the experience that 
a well-modelled, type-safe API following the com-

Fig. 1 Usage scenarios for Web services (source: [19])



Informatik_Spektrum_23_April_2004 5

information (in order to reduce network traffic and
processing time).

3.3 Automated application development
environment

The high degree of code generation based on the
metadata information stored in the repository and
the out-of-the-box integration of Web services into
standard tools available in the market results in
faster development cycles, better software quality
and reduced development costs.

The resulting integrated code generator- and
repository-supported development process out-
lined in Fig. 3 is a key element of the solution archi-
tecture. A new business function is first described
in the repository. Code generation support is then
available on all three tiers. The backend business
logic developer is supported by generated database
access code; for the middle tier, deployment infor-
mation and the code for the Web services access
layer is created. WSDL service descriptions are gen-
erated as well, which can be imported into different
client development environments to create service
invocation proxies for various programming lan-
guages.

3.4 Solving the XML/SOAP 
message verbosity issue 

As already mentioned in Sect. 2.1, we had to achieve
good response times and avoid bottlenecks even 
in situations when only low network capacity is
available. A related key issue, which we identified at
an early stage, is the high amount of XML overhead
typically produced by the SOAP runtimes. In our
environment, payload to SOAP message size ratio
was 1:4 in the best case, sometimes 1:16 and worse.

XML verbosity can be a challenging problem,
and there are more related requirements than just

Fig. 2 Architecture overview of the integration solution

mand pattern from Gamma et al. [7], providing a
specific client interface for each business function –
instead of a generic one for all – hides complexity
and reduces the development effort significantly.

To further satisfy requirement two (to reduce
the development effort), we had to design the new
Web services API in such a way that a high-level
API could easily be generated by WSDL-aware
tools; this is an instance of the remote proxy pattern
[7]. The API also was supposed to hide all technical
details of the service implementations and the tech-
nology platform from the client developer.

These considerations led us to an operation de-
sign with complex, function-specific XML schema
definitions for the request and response messages
(or input and output parameters, respectively).
For each business function, a corresponding Web
service provider bean was implemented as a J2EE
component following a common adapter pattern.
The interface signature itself was defined as fol-
lows2:

ResultBean = execute(ContextBean, InputBean,

WishlistBean)

The model-driven API was designed in such a way
that the ContextBean is identical for all func-
tions, representing session parameters such as user
and session identification. The other beans are
business function specific. The InputBeans are
responsible for input parameters, the Result-
Beans for all output parameters and error mes-
sages. The WishlistBeans consist of indicator
fields matching the output parameters, as the client
can explicitly ask for a subset of all available result

2 According to the JAX-RPC specification [10], the Java representation of complex
XML schema types are nested JavaBean and array structures.

Fig. 3 Integrated and automated application development
process



WEB SERVICES-ORIENTED ARCHITECTURE}

Informatik_Spektrum_23_April_20046

algorithm efficiency. For example, a generic algo-
rithm is desired, no software distribution effort
should be introduced, and benefit and overhead
(e.g. in terms of CPU consumption) have to be 
balanced.

Our final countermeasure to the message ver-
bosity concern was to base the implementation on
SOAP transport hooks allowing a flexible integra-
tion of different data reduction algorithms.

Clients have the flexibility to select the optimal
data reduction algorithm for their particular usage
scenarios; depending on the usage scenario, data
reduction rate, lower network bandwidth and in-
creased CPU cycles have to be balanced. Tests sho-
wed that the GNU Zip algorithm is a good solution
for many scenarios, especially because inexpensive
implementations exist on the most popular plat-
forms and implementation languages. According 
to our experience, the transferred XML data stre-
ams can typically be reduced by 40–50%.

4 Project approach and results
As at the beginning of our analysis and design
work in October 2001, Web services certainly were
undiscovered ground in the enterprise application
development world. We therefore applied a three-
phased project approach:

· Feasibility study: conceptual groundwork, October to
November 2001.

· Proof of Concept, December 2001 to February 2002.
· Release 1 of production system (August 2002 to December

2002); at the time of writing, a Release 2 project had just
been completed.

In this paper, we describe the full-scope production
solution and the project work related to it. The
Proof of Concept project, which implemented a
representative subset of the final solution, is fea-
tured in a previous report [4].

4.1 Overall results
The most important overall projects results are:

· The solution was delivered on time and budget.The system
is in production now and well accepted. At the time 
of writing, there are six client applications already, with
more in the pipeline.

· The three-phased project approach mentioned above 
turned out to be very helpful, because it allowed the team

to learn and grow over the various stages; it also helped 
to mitigate the mutual project risk.

· The SOAP server performance met the requirements.We 
experienced no significant overhead compared to the 
proprietary XML/HTTP solution that existed before. Not 
surprisingly, SOAP engines using SAX parsing outperform
those making use of DOM; document/literal communication
performs better than rpc/encoded (these two SOAP com-
munication styles and encoding schemes are discussed in
detail elsewhere [4, 19]).

· Microsoft to Apache SOAP interoperability was achieved
with reasonable testing effort (less than ten person days 
in Release 1). Some workarounds had to be applied; all re-
quired knowledge is public and available at developer fo-
rums such as IBM developerWorks [5]. Issues that required
workarounds were WSDL imports, implicit vs. explicit typing
in SOAP envelope, null values, binary data serialization, and
SOAP Section 5 Encoding ambiguities.The work of the Web
Services Interoperability (WSI) initiative, whose Basic Profile
[18] became available after Release 1 of our solution had
gone into production, provides significant further improve-
ments, so that in Release 2, the interoperability testing 
effort was reduced to being almost negligible.

· The J2EE and Web services support in tools such as IBM
WebSphere Studio Application Developer speeds up pro-
jects tremendously. For enterprise scale projects, the invest-
ment in production-strength tools should be made. Open
source tools can be a low-cost alternative for smaller efforts.

· Not all Web services technologies always have to be used.
For example, the service repository does not always have 
to be a UDDI registry; the existing HTML documentation
does a perfect job in our case.

Our conclusion from these very positive results is
that Web services are ready for production use,
solving real-world problems in a mature and good
enough way. The standards and product stacks cer-
tainly still have to be improved and completed, par-
ticularly in the higher layers as defined in the arti-
cle by Ferguson et al. [6]. However, the XML, WSDL,
and SOAP core existing today has proven the point.

A decision against a certain element of the
technology, e.g. UDDI, or concerns in areas such as
security and transactions cannot justify ruling out
the entire technology – the modular structure of
Web services allows a best-of-breed strategy. Com-
plementary technologies can be used to complete
the Web services stack on a per-scenario base. Fur-
thermore, standards bodies and vendors are work-
ing on closing the remaining gaps.



Informatik_Spektrum_23_April_2004 7

When assessing the maturity of Web services,
the implementation alternatives should also be 
considered – for example, is there out-of-the-box
support for secure reliable transactions in your
home-grown, proprietary distribution technology?

4.2 Technical issues
The most prevalent technical issues we encountered
and solved during the various stages of the project
were:

· Several SOAP to programming language mappings had
problems with the serialization and deserialization of null
values, which are allowed in XML schema (nillable=
”true” attribute) and SOAP. Consider the following 
scenario: an empty versus a null-valued phone number in
the CustomerMoves function, an empty phone number 
indicating that there is no phone in the new home (yet),
and a null-valued phone number indicating that the old
phone number continues to exist after the move. In the Java
world, the problem can be solved because the SOAP/XSD to
Java mappings typically are configurable, and there are
wrapper classes such as java.lang.String. In 
Microsoft .NET, to the best of our knowledge such features
currently do not exist.We had to define a workaround here.

· SOAP Chapter 5 Encoding: Until recently, this data model,
which for historical reasons is different from XML schema,
was the default used by many RPC-oriented code genera-
tion tools, especially in the Java world. Unfortunately, the 
serialization algorithm defined by the SOAP specification 
is ambiguous and gives the writer many choices, e.g. how 
to represent arrays.The reader had to be able to understand
them all.This caused some extra development effort in our
project; in general, it is very hard, if not impossible, for tool
vendors to guarantee interoperability.WSI has therefore 
decided to ban SOAP Section 5 Encoding from its interoper-
ability profile. For these reasons, our Release 2 implementa-
tion uses wrapped document/literal styled messages [3] 
rather than rpc/encoded ones.

· SOAP at its heart is just a messaging format.The data type
encoding is an optional part of the specification. However,
from our point of view, a large amount of the value add 
of SOAP lies in the automatic (de)serialization support.
Therefore, the wrapped document/literal mode has emer-
ged as a de facto standard both in the Java and in the 
Microsoft world; it is already described in the 1.1 version 
of the JAX-RPC specification [10].This communication and
invocation style should be formally adopted in the WSDL
and WSI specification work, and, in the Java world, aligned
with the JAX-B work [9].

· Case (in)sensitivity mismatch:“The JavaBean specification
defines an automatic property name decapitalization 
algorithm. If there is a getter method called get_
McProperty, with Mc standing for mixed case, the
JavaBean specification dictates that the name of the corre-
sponding property is mcProperty and not McProp-
erty. However, in the WSDL description of the service,
McPropertymight appear as the name for the corre-
sponding field (depending on the tool being used for WSDL
creation).This case sensitivity mismatch can introduce an 
interesting interoperability issue for SOAP RPC parameters.
Following the JavaBean decapitalization rules, the property
name assumed by Apache SOAP in our example is
mcProperty. However, a WSDL-aware non-Java client
might write an upper case accessor McProperty into 
a request envelope. In this case, a server side Apache SOAP
runtime might not find the corresponding bean property
during parameter deserialization.Watch out for this 
problem in any heterogeneous environment. For example,
a .NET client obviously does not enforce the JavaBean 
specification.The best solution to the problem is not to use
mixed case names at all; both server side JavaBeans and
WSDL/XSD definitions should stay with lower case names
and use only the basic Latin characters.” [19].

4.3 More on interoperability 
and productivity improvement verification

To prove the interoperability of the solution, early
Microsoft .NET and Java test clients were imple-
mented, since these technologies were most widely
used by the savings banks. In the Proof of Concept
and the Release 1 project, interoperability between
.NET and Apache SOAP could be achieved with 
a few “tweaks” such as explicit sending of data type
information and slight WSDL modifications (reso-
lution of schema imports), demonstrating that the
suggested approach was valid. In Release 2, the
emerging vendor support for the WSI Basic Profile
delivered the promise of seamless interoperability.

At a very early project stage, we verified that
requirement two (reduce the development effort)
could be fully satisfied by testing with the IBM
WebSphere Studio Application Developer and the
Microsoft .NET development environment. Based
on the WSDL files, both tools could generate a proxy,
representing the client part of the Web services pro-
vider bean as expected. The short development time
of new applications reusing the proxies generated
by tools demonstrated that the model-driven API
we introduced in Sect. 3.2 indeed was easy to use.



WEB SERVICES-ORIENTED ARCHITECTURE}

Informatik_Spektrum_23_April_20048

5 Web services best practices
Following the best practices for a technology is 
always key to project success; Web services are no
exception to this rule. Several excellent articles 
on this topic have recently been published (for ex-
ample, [2]).

We harvested the following best practices from
this and other projects [19].

Service modelling
The following service modelling guidelines can be
defined:

· Follow the design-by-contract principle.
· Separate concerns, and separate interface from implemen-

tation.
· Provide interoperable versions of your WSDL specifications.
· Expose coarse-grained interfaces.
· Avoid complex operation signatures; stay with request-

response messages.
· Keep service, method, parameter and type names small 

and simple.

Service messaging
The following best practices for service messaging
apply:

· Specify the style/use attributes either as document/literal 
or as rpc/encoded; do not mix the two alternatives in the
same Web service.

· Carefully observe the messaging overhead so that counter-
measures can be applied early enough.

· Be aware of the trade-off between security and perfor-
mance requirements.

· Design your Web services to be as stateless as possible.
· Include, but do not rely on the HTTP SOAPAction

header.
· Try to leverage already existing XML compression features.

Service matchmaking
In the service matchmaking domain, the following
hints should be followed:

· Carefully evaluate which type of UDDI registry (private 
versus public) is suited for your scenario.

· Consider lightweight alternatives to UDDI.
· Obey the best practices already established by UDDI.org

SOA and project approach
General advice regarding the SOA is as follows:

· Carefully decide whether Web services are the right technol-
ogy for your problem at hand.

· Apply standards pragmatically; follow the 80–20 rule.
· Use stateless session EJBs as provider type if J2EE is your 

implementation platform and EJBs exist in the overall 
architecture.

· Resist the temptation to be over-creative.
· Design for performance, and apply performance 

measurement best practices.
· Test early and often.

Unfortunately, a more detailed coverage of these
best practices exceeds the scope of this article. Re-
fer to pages 527 to 534 in the paper by Zimmerman
et al. [19] for such a discussion of all best practices
listed here, as well as several additional ones.

6 Conclusions and future work
In this paper, we described how Sparkassen Infor-
matik implemented a services-oriented architecture
consisting of standardized business functions 
(processes) to be reused in new applications in 
a flexible and channel-neutral manner.

The Dynamic Interface, an integration platform
providing a set of APIs and interface layers and 
allowing access to business function and data, is
the foundation of this architecture. In a three-
phased staged project, Sparkassen Informatik,
with the help of IBM, developed a successful Web
services-enabled Dynamic Interface.

6.1 Engagement summary
The Web services enablement of the Dynamic 
Interface is a key component providing the glue 
between applications and business functions and
defining the supported platforms and implementa-
tions. The integration approach determines the 
level of flexibility and complexity. We decided on
Web services for the following reasons:

· Web services make simple, self-describing modular 
applications available on the web.

· Web services are independent of any component model,
implementation language, transport protocol, operating
system and platform.

· Web services separate interface and implementation 
(encapsulation).



Informatik_Spektrum_23_April_2004 9

· Web services are based on open standards and can be 
invoked over Internet infrastructure.

· Web services may optionally be published and searched 
in a repository.

· Web services are supported by standard development tools.

Concrete benefits the Web services solution brings
to the table in our context are:

· Write once, use everywhere: It is no longer required to write
custom, platform-specific code, true interoperability be-
tween platforms is achieved.

· Design by contract: standard interface description of busi-
ness components, integration with standard development
tools, no software distribution

· Improved client interface: A model-driven, business function-
specific Application Programming Interface (API) replaces
low-level XML and HTTP coding.

Key architectural decisions in this project were:

· Service modelling and granularity: General advice is to model
as coarse-grained as possible, the service boundary should
reflect a business process (or activity). In our case, lower-
level CRUD and search functions as well as higher-level 
services are exposed.We decided for a process model-driv-
en, generator-supported service invocation interface.

· SOAP runtime and API: Our client API is JAX-RPC. As SOAP
runtimes, we worked with Apache SOAP 2.2, Apache Axis,
and an optimized IBM implementation of JAX-RPC/JSR 109
called WebSphere 5.0.2 SOAP.

· SOAP communication style and encoding: We support both
rpc/encoded and document/literal, but over time we will
move away from rpc/encoded due to its conceptual flaws
such as usage of an outdated, obsolete data model (which 
is different from XML schema) and inherent ambiguities
(which cause interoperability problems).

· Regarding service matchmaking, an XML/HTML service 
repository (and frontend) is already in place at Sparkassen
Informatik.Therefore, we do not use UDDI, even if a business
need for a central service broker/directory exists.

· The success of a project is driven mainly by general 
architectural decisions such as choice of hardware and 
operating system platform (we chose IBM pSeries and AIX
for the middle tier) and the quality of the XML parser.

6.2 Outlook
Sparkassen Informatik is committed to continue to
support and enhance the Web services solution de-
scribed in this article. Here is an outlook to future
activities:

· Functional enhancements further improving client develop-
er productivity.

· Continued WSI and other standards compliance (WSI,
W3CWSA).

· Declarative and descriptive process flow execution 
(higher-level services) available through the Business 
Process Execution Language for Web Services (BPEL4WS)
and related modelling tools and runtimes [1, 11].

· Leveraging the emerging Web services security (WS-
security) standards and their implementations as defined 
by the OASIS consortium [12]3.

6.3 In retrospect:
web services – holy grail or deja vu?

Are Web services the holy grail of distributed com-
puting [19]?

· Web services are a relatively simple, programming lan-
guage-neutral and interoperable communication technolo-
gy.

· Web services are available today – at low initial costs and
minimal risk.

· Many business scenarios such as EAI, B2B and common ser-
vices are supported.

· Comprehensive and mature tool support is available; huge
productivity gains can be realized.

Or did you experience déjà vu when you first heard
about Web services, or reading this article?

· Web services merely provide an API instead of a browser
GUI for access to Web applications.

· The remote proxy pattern, interface descriptions and 
a service directory (registry) are key concepts.

· Well-known technologies such as HTTP and XML are 
leveraged.

· There is a semantics (vocabulary) issue.The specification
lifecycle is quite typical; gaps in the technology exist and 
are currently being closed.

3 Currently, security requirements such as integrity, confidentiality, authentication
and authorization are addressed on the network, on the transport and on the
application layer.



WEB SERVICES-ORIENTED ARCHITECTURE}

Informatik_Spektrum_23_April_200410

In a nutshell, our experience suggests that both
provocative statements are true...

About the authors
Michael Brander is a Consulting IT Architect in
IBM’s Financial Industry Sector. In his role as
Client IT Architect, he supports his customers in
pre- and post-sales situations, and is responsible
for strategic enterprise architecture consulting 
activities.

Michael Craes is Project Manager and Techni-
cal Consultant at Sparkassen Informatik. He leads
the Dynamic Interface development projects, and 
is the product manager both for the core interface
as well as its Web services extension.

Frank Oellermann is a Technical Consultant 
at Sparkassen Informatik, responsible for the 
Dynamic Interface solution in general and its 
generators in particular. Furthermore, he runs the
technical education programme the Dynamic 
Interface team provides to its customers.

Olaf Zimmermann is a Consulting IT Architect
in IBM’s world-wide Enterprise Integration Solu-
tions team. Over the last few years, he has conduct-
ed numerous Web services-related engagements.
Olaf is an author of the text book Perspectives 
on Web Services [19], and contributed to IBM ITSO
Redbooks such as Web Services Wizardry with 
WebSphere Studio Application Developer [16].

Acknowledgements
The project featured in this article project certainly
was a team effort. In particular, Reinhold Nolte,
Guido Ranft, and Torsten Verstappen (all of Spar-
kassen Informatik), as well as Martin Fleming, Sven
Milinski, Frank Strecker, and Thorsten Stumpf
(IBM), all contributed tremendously to the project
success and deserve massive thanks and apprecia-
tion.

References
1. Business Process Execution Language for Web Services Version 1.1, available from

http://www.ibm.com/developerworks/webservices/library/ws-bpel
2. Brown, K., Reinitz, R.: Web services architectures and best practices, IBM developer-

Works 2003, http://www.ibm.com/developerworks/websphere/techjournal/
0310_brown/brown.html

3. Butek, R.: Which style of WSDL should I use?, IBM developerWorks 2003,
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl

4. Craes, M., Oellermann, F.: Getestet und für geeignet befunden, XML & Web Services
Magazin 1 (2002) (overview of Sparkassen Informatik Web services proof of concept,
in German)

5. IBM developerWorks portal. Articles, tutorials, sample code, links to trial versions of
software and open source assets. http://www.ibm.com/developerworks/webservices

6. Ferguson, D.F., Storey, T., Lovering, B., Shewchuk, J.: Secure, reliable, transacted web
services, IBM and Microsoft 2003, http://www.ibm.com/developerworks/
webservices/library/ws-securtrans

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns – Elements of reusable
object-oriented software. Addison-Wesley 1995, ISBN 0201633612

8. IBM e-business on demand overview, available from http://www.ibm.com/
e-business/index.html

9. Java XML Binding, available via http://java.sun.com
10. Java XML API for Remote Procedure Calls (JAX-RPC), available via http://java.sun.com
11. Leymann, F., Roller, D., Schmidt, M.T.: Web services and business process manage-

ment, IBM Systems Journal 41(2) (2002)
12. OASIS consortium, http://www.oasis-open.org
13. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000,

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
14. Sparkassen Informatik on the Internet, http://www.sparkassen-informatik.de
15. Web Services Architecture, W3C, available from http://www.w3.org/2002/ws
16. Wahli, U., Tomlinson, M., Zimmermann, O., Deruyck, W., Hendriks, D.: Web services 

wizardry with WebSphere studio application developer, IBM Redbook 2002,
ISBN 0738423351

17. Web services description language (WSDL) 1.1, W3C Note 15 March 2001,
http://www.w3.org/TR/wsdl

18. Web Services Interoperability Initiative, http://www.ws-i.org
19. Zimmermann, O., Tomlinson, M., Peuser, S.: Perspectives on web services – Applying

SOAP, WSDL and UDDI to real-world projects. Berlin Heidelberg New York Tokyo:
Springer, 2003, ISBN 3540009140, http://www.perspectivesonwebservices.de


