
B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 81–93, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architectural Decisions and Patterns
for Transactional Workflows in SOA

Olaf Zimmermann1, Jonas Grundler2, Stefan Tai3, and Frank Leymann4

1 IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
olz@zurich.ibm.com

2 IBM Software Group, Schönaicher Strasse 220, 71032 Böblingen, Germany
jonas.grundler@de.ibm.com

3 IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
stai@us.ibm.com

4 Universität Stuttgart, IAAS, Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

Abstract. An important architectural style for constructing enterprise applicati-
ons is to use transactional workflows in SOA. In this setting, workflow activi-
ties invoke distributed services in a coordinated manner, using transaction
context-propagating messages, coordination protocols, and compensation logic.
Designing such transactional workflows is a time-consuming and error-prone
task requiring deep subject matter expertise. Aiming to alleviate this problem,
we introduce a new analysis and design method that (a) identifies recurring ar-
chitectural decisions in analysis-level process models, (b) models alternatives
for these decisions as reusable, platform-independent patterns and primitives,
and (c) maps the patterns and primitives into technology- and platform-specific
settings in BPEL and SCA. Our method accelerates the identification of
decisions, empowers process modelers to make informed decisions, and auto-
mates the enforcement of the decisions in deployment artifacts; tool support is
available. We demonstrate value and feasibility of our method in an industry
case study.

Keywords: BPEL, BPM, patterns, transactions, MDA, SCA, SOA, workflow.

1 Introduction

Service-Oriented Architecture (SOA) with transactional workflow support is a state-
of-the-art architectural style for constructing enterprise applications. In this context,
enterprise resources such as databases and message queues are exposed as distributed
services, which are invoked concurrently by diverse service consumers including end
user applications and executable workflows. The integrity of the enterprise resources
must be preserved at all times [4]. System-level transaction techniques such as Ato-
micity, Consistency, Isolation, and Durability (ACID) transactions and business-level
solutions such as compensation-based recovery are two ways of addressing this re-
quirement [8]. However, defining transaction boundaries and implementing com-
pensation logic are complex, time-consuming, and error-prone tasks requiring deep
subject matter expertise. Neither reusable architectural patterns nor methodological

82 O. Zimmermann et al.

support exist today; development tools do not guide process modelers sufficiently.
This lack of support is diametrically opposed to SOA design goals such as increased
agility, flexibility, and reusability – in our opinion, a key inhibitor for real-world
adoption of transactional workflows in SOA.

In this paper, we introduce a new analysis and design method that aims to eliminate
this inhibitor by combining architectural decision modeling techniques, reusable pat-
terns composed of primitives, and mappings of the primitives to concrete technologies
such as the Business Process Execution Language (BPEL) and the Service Component
Architecture (SCA). Our method covers the entire lifecycle from analysis to conceptual
design to technology selection and runtime engine configuration. This end-to-end
coverage speeds up the identification of design alternatives for transactional workflows
in SOA and helps to make the decision making process repeatable; architectural know-
ledge can be shared across project and technology boundaries. Pattern-aware design
tools can map the primitives to platform-specific technology specifications and
deployment artifacts, e.g., in BPEL/SCA engines and other middleware.

The remainder of this paper is organized in the following way. Section 2 defines
the context for our work. Section 3 scopes the problem to be solved by identifying
recurring architectural decisions in a real-world case study. Section 4 defines three
conceptual transaction management patterns and three underlying primitives, along
with an exemplary technology- and asset-level transformation. Section 5 discusses
related work, and Section 6 concludes with a summary and an outlook to future work.

2 Background

The objective of our work is to support the design and development of enterprise
applications that require transactional semantics. An example is a Customer Relation-
ship Management (CRM) system that serves many concurrent users via multiple
access channels and processes, including an Internet self-service and a call center. In
this CRM, business-relevant customer profile information is persisted in databases
and accessed via Web-accessible services; external systems also have to be integrated.

SOA and Web services. SOA reinforces general software architecture principles
such as separation of concerns and logical layering. A defining element of SOA as an
architectural style is the possibility to introduce a Service Composition Layer (SCL)
[18], which promises to increase flexibility and agility and to provide better responsi-
veness to constantly changing business environments. (Re-)assembling workflows in
the SCL does not cause changes on the underlying service and resource layers; com-
putational logic and enterprise resource management are separated from the service
composition. We refer to a SOA with such a SCL as a process-enabled SOA.

XML-based Web services are a state-of-the-art implementation option for process-
enabled SOAs [19]. The Web Services Description Language (WSDL) [15] describes
service interfaces, SOAP [12] service invocation messages. BPEL [14] is a workflow
language with operational semantics that can be used to realize the SCL. Component
models for the implementation of services are emerging; SCA is such a model [9].
Service components in SCA are defined from several perspectives: an interface
describing the input and output parameters of the operations of a component,
references to other components, and component implementations. Via imports, a
component implementation can reference external services.

 Architectural Decisions and Patterns for Transactional Workflows in SOA 83

In the CRM example, let us assume that process-enabled SOA has been chosen as
the architectural style. The business processes to be implemented are modeled expli-
citly during requirements analysis; their execution as SCL workflows is later automa-
ted using a BPEL engine. The tasks in the processes are realized as atomic and
composed Web services, which have a WSDL interface and can be invoked at run-
time through transport protocol bindings, e.g., SOAP/HTTP. We further assume that
these services are implemented as SCA components or integrated via SCA imports.

Transactional workflows. In the CRM system, relational database tables and messa-
ge queues provided by integration middleware [5] serve as enterprise resources persi-
sting and exchanging customer profiles. Concurrent and distributed access to
transactional enterprise resources can be coordinated by transaction managers, which
are in charge of ensuring the ACID properties; Relational Database Management
Systems (RDBMS) and queue managers then take a local resource manager role
subordinate to a transaction manager [8].

The SCL in a process-enabled SOA can be seen as a workflow application. If a
BPEL engine in the SCL serves as a transaction manager, its process flows become
transactional workflows [8]. Transactional workflows coordinate the outcome of the
local and remote service invocations that access and manipulate the enterprise resour-
ces. Transactional workflows in process-enabled SOA are particularly challenging to
design due to the potentially long-lived nature of processes, the loose coupling and
autonomy of services, the existence of non-transactional resources, and the diversity
in coordination and communication protocols (synchronous and asynchronous mes-
sage exchange patterns). Traditional system transactions alone are not directly
applicable in a SOA setting; a more decentralized coordination model and applica-
tion-level compensation strategies have to be added. To address these needs,
WS-Coordination, WS-AtomicTransaction (WSAT), and WS-Business Activity Frame-
work (WBAF) complement the Web services specifications introduced above [17].

3 Recurring Architectural Decisions in Process-Enabled SOA

Today’s SOA tools use default transaction management settings when translating ana-
lysis-level process models into BPEL workflows, Web services and SCA components
[20]. Often, these settings are inappropriate and have to be changed during the later
development steps. This is error-prone, platform-specific work; software quality
issues arise and technical project risk increases. This problem can be overcome by:

A method for the systematic design of transaction management settings in process-
enabled SOA, which (a) identifies the required architectural decisions in analysis-
level process models, (b) captures proven design options as patterns which facilitate
the decision making, and (c) transforms the patterns to platform-specific settings.

Sample process. Refining our CRM example, we now discuss the SOA enablement
of an existing system of a telecommunication service provider that is organized into
several Lines of Business (LOB), including wireline and wireless telephony. The
business event triggering the sample process is a customer requesting an upgrade
from prepaid to regular wireless service, e.g., by calling a call center agent.

84 O. Zimmermann et al.

Figure 1 outlines this key business process in the CRM system, Upgrade Customer:

Fig. 1. Sample CRM process: analysis-level BPM including enterprise resources

The analysis-level Business Process Model (BPM) specifies that first the customer
status has to be determined (Determine Wireless Customer Status), so that the custo-
mer profile, an enterprise resource spread over several repositories, can be retrieved
(Retrieve Wireless Customer Profile). Next, a tentative Upgrade Wireless Customer
Profile task is executed; however, the status change can only be finalized if a subse-
quent Reconcile Profile Upgrade task completes successfully. This task sends appro-
val request messages to the two CRM systems of the wireline LOB. If any of these
CRM systems declines the upgrade or does not respond within a working day, the
upgrade process has failed, and the wireless customer profile must remain unchanged.
Other business processes work with the customer profile while this process is running.

An analysis-level BPM such as Figure 1 is typically created by a business domain
expert, not a software architect or workflow technology specialist. Such a BPM is not
directly executable in a workflow engine; typically it does not cover design concerns
such as data flow, resource protection, and error handling sufficiently. In the CRM
example, the customer profiles are the enterprise resources to be protected with
system and/or business transactions.1 Another transactional enterprise resource might
be the process instance state maintained by the engine; a BPEL engine in transaction
manager role may have to roll back process parts when handling errors, even if

1 Not all resources have to be protected by transactions, e.g. immutable resources meet the

ACID characteristics trivially. On the other hand, not all resources worth protecting can
actually be protected by transaction managers, e.g., due to legacy system constraints.

 Architectural Decisions and Patterns for Transactional Workflows in SOA 85

activities that do not participate in the same transaction (the one in which the BPEL
process runs) have been committed on the system level already.

Recurring architectural decisions. It is technically feasible to transform the analy-
sis-level BPM from Figure 1 into a design-level process model, e.g., via basic
BPEL/SCA export utilities provided by commercial SOA tools [7]. However, such
predefined transformations do not obey any architectural decisions that are made in
response to project-specific requirements [20]. Many of these architectural decisions
must be made for any process-enabled SOA, not just our CRM example: Which com-
position paradigm and resource protection approach should be selected? Who coordi-
nates the transactions? Which invocation protocols are best suited to invoke services
from the process activities in the SCL? Should the process activities and the service
invocations run in separate transaction islands or form a transaction bridge? Which
compensation technology should be used, and where should it be placed?

As step (a) of our method, Figure 2 organizes these recurring decisions by their ab-
straction level and scope. The abstraction level refines from conceptual issues such as
selection of a composition paradigm (here: workflow) to technology and asset selecti-
on (here: BPEL language and BPEL engine). The scope of a decision assigns it to de-
sign model elements; in the CRM example, the activity transactionality has to be
decided for Reconcile Profile Upgrade and the other four tasks shown in Figure 1.

Transactionality

O

Q

Transaction Islands
(Section 4.1)

O Transaction Bridge
(Section 4.1)

Composition
Paradigm

O
Q

Workflow
(SCL)

O Custom
Code

Workflow
Language

O
Q

BPEL

O None

BPEL Engine
Selection

O
Q

IBM WPS
(Section 4.2)

O Other

Component
Technology

O
Q

SCA

O J2EE

Transactional Activity
Behavior in WPSQ O (Section 4.2)

Project Scope (e.g., CRM) Process Scope (Upgrade Customer) Activity/Operation Scope (5 Tasks in BPM)

Te
ch

no
lo

gy
 L

ev
el

Resource
Protection

O
Q

System Transactions
(Global Transaction)

O Compensation (Busi-
ness Transaction)

Compensation
Technology

O

Q

BPEL handler
(and/or WBAF)

O Engine-specific
compensation

O Custom code

Transaction
Coordinator

O
Q

Process Engine in
SCL

OC
on

ce
pt

ua
lL

ev
el

A
ss

et
Le

ve
l

Q – Question (Architectural Decision)
O – Option (Architecture Alternative)

RMI – Remote Message Invocation
IIOP – Internet Inter-ORB Protocol
JMS – Java Messaging Service
MOM – Message-Oriented Middleware
J2EE – Java 2 Enterprise Edition

O Stratified Stilts
(Section 4.1)

SCA Interface
Qualifier OQ

(Section
4.2)

SCA Reference
Qualifier OQ

(Section
4.2)

SCA Import
Qualifier OQ

(Section
4.2)

SCA Implemen-
tation Qualifier OQ

(Section
4.2)

External Coordinator
(Third Party)

O SOAP/HTTP with
WS-AT enabled

O RMI/IIOP

O JMS, other MOM

Service Invocation
ProtocolQ

O SOAP/HTTP

WPS – WebSphere Process Server

Compensation
Placement

O

Q

External
processing

O BPEL
scope

O BPEL
activity

EJB Transaction
Attribute OQ

Related
work

Fig. 2. Architectural decisions and alternatives for transactional workflows in SOA

4 Architectural Patterns as Decision Alternatives

As step (b) of our method, we now introduce three conceptual patterns as solution
options (architecture alternatives) for the activity transactionality decision from

86 O. Zimmermann et al.

Figure 2. These conceptual patterns comprise of platform-independent primitives that
we map to BPEL and SCA technology and engine deployment artifacts in step (c).
The primitives are designed in such a way that other mappings can also be provided.

4.1 Conceptual Patterns and Primitives

The tasks from Figure 1 require different transactional treatment: Determine Wireless
Customer Status does not change any enterprise resource; transactional execution is
not required. The retrieval should execute as fast as possible. Upgrade Wireless
Customer Profile updates wireless customer profiles; the service operation is co-
located with that realizing the Retrieve Wireless Customer Profile task. Changes must
be executed with all-or-nothing semantics. The CRM systems contacted in Reconcile
Profile Upgrade offer messaging interfaces and may take days to respond. Still, all-or-
nothing semantics is required; if any of the reconciliation request messages returns an
error or times out, the updates to the wireless customer profile made by Upgrade
Wireless Customer Profile must be undone.

TRANSACTION ISLANDS, TRANSACTION BRIDGE, and STRATIFIED STILTS are three
patterns commonly used to address resource protection requirements such as those in
the CRM. In theory, more design options exist; however, faithful to established
pattern capturing principles, we only present patterns observed and proven in practice.

Figure 3 illustrates the patterns on an abstract level; a more detailed pattern de-
scription follows later. The SCL is represented by the white boxes. It implements the
tasks in the analysis-level BPM as process activities that are part of executable
workflows; two invoke activities I1 and I2 enclose a third activity U, which for
example may be a BPEL assign activity or another utility. S1 and S2 represent service
providers exposing operations. Service operation invocations are displayed as dotted
lines. A contiguous light grey area represents a single global transaction as defined in
[8], which may be extended if it is not enclosed by a solid black line.

(1) Process
activities in SCL

(2) Communicati-
ons infrastructure

(3) Service
providers

S1 S2

I2UI1

Pattern 1:
TRANSACTION ISLANDS

S2

I2UI1

S1

Pattern 2:
TRANSACTION BRIDGE

U

S1 S2

I2I1

 Pattern 3:
STRATIFIED STILTS

Fig. 3. Transaction context sharing options between process activities and service operations

These patterns comprise of three types of primitives that correspond to the
architectural layers from Figure 3: (1) Process Activity Transactionality (PAT) primi-
tives for the process activities in the SCL. (2) Communications Transactionality (CT)
primitives modeling the capabilities of the communications infrastructure (invocation

 Architectural Decisions and Patterns for Transactional Workflows in SOA 87

protocol, component technology). (3) Service provider Transactionality (ST) primi-
tives stating the capability and willingness of service providers to join a transaction.

These primitive types are conceptual, platform-independent abstractions of
concepts for example found in today’s BPEL/SCA technology, and can be viewed as
design time statements of architectural intent. Figure 4 illustrates the primitives:

(1) PAT – Process Activity (3) ST – Service Provider(2) CT – Communication

S S

(S
T-

J)
 J

oi
n

(S
T-

N
) N

ew

(P
A

T-
J)

 J
oi

n

I2UI1

I2UI1

(P
A

T-
N

) N
ew

Tr
an

sa
ct

io
n

S

I

S

I

(C
T-

ST
)

S
yn

ch
ro

no
us

 T
ra

ns
ac

tio
na

l

(C
T-

AS
)

As
yn

ch
ro

no
us

 S
tra

tif
ie

d

(C
T-

SN
T)

S
yn

ch
ro

no
us

 N
on

-T
ra

ns
ac

tio
na

l

S

I

Fig. 4. Conceptual primitives as pattern building blocks (notation same as in Figure 3)

To elaborate upon the defining characteristics of the patterns and the primitives, we
now present them in a format commonly used in the design patterns literature.

Intent. All patterns and primitives share the objectives motivated in Sections 2 and 3:
To protect enterprise resources against integrity and correctness threats that may
occur during concurrent process execution, e.g., when multiple processes and acti-
vities in the SCL invoke distributed services via a SOA communication infrastructure.

Pattern 1. Decoupled TRANSACTION ISLANDS (PAT-J+CT-SNT+ST-N in Figure 3)

Problem. How to isolate SCL process activities from service operation execution?

Solution. Do not propagate the transaction context from the SCL to the service.

Example. In the CRM case study, this pattern is applicable for Determine Wireless
Customer Status. This analysis-level task is realized as a process activity that invokes
a read-only operation which in this example should execute non-transactionally.

Forces and consequences. If a service operation fails, the process navigation in the
SCL is not affected, and vice versa. If a service works with shared enterprise re-
sources, its operations must be idempotent, as they may be executed more than once
due to the transactional process navigation in the SCL. In many cases, the service
provider must offer compensation operations, and higher-level coordination of the
compensation activities is required (e.g., via business transactions; various models
have been proposed). In practice, this pattern is often selected as a default choice.

Pattern 2. Tightly coupled TRANSACTION BRIDGE (PAT-J+CT-ST+ST-J shown in
Figure 3); MULTIPLE BRIDGES variant (PAT-N+CT-ST+ST-J).

Problem. How to couple process activity execution in the SCL and service operation
execution from a system transaction management perspective?

88 O. Zimmermann et al.

Solution. Configure process activities, communications infrastructure, and service
providers in such a way that the SCL transaction context is propagated to the service.

Example. In the CRM case study, this pattern addresses the all-or-nothing require-
ments stated for Retrieve/Upgrade Wireless Customer Profile (co-located services).

Forces and consequences. Process activities and the service operations invoked by
them execute in the same transaction. As a result, several service operations can also
participate in the same transaction. Therefore, a natural limit for their response times
exists (“tens of seconds to seconds at most” [8]). If a service-internal processing error
occurs, previous transactional work, which can include process navigation in the SCL
and the invocation of other services, has to be rolled back. This pattern meets resource
protection needs well on the system level, but often is not applicable, e.g., when
processes and operations run for days or months. Hence, a common variation of this
pattern is to split an SCL process up into several atomic spheres [8], creating
MULTIPLE BRIDGES for selected process activity/service operation pairs. Executing
the process activities in a small number of transactions (single TRANSACTION BRIDGE)
reduces the computational overhead for process navigation; splitting the process up
into several atomic spheres (MULTIPLE BRIDGES) increases data currency.

Pattern 3. Loosely coupled STRATIFIED STILTS (PAT-J+CT-AS+ST-J in Figure 3)

Problem. How to realize asynchronous, queued transaction processing in SOA?

Solution. Use message queuing as SOA communication infrastructure.

Example. In the CRM case study, this pattern must be applied for Reconcile Profile
Upgrade, as the wireline CRM systems only provide messaging interfaces (e.g., JMS);
additional compensation logic is required. In Figure 3, I1 and S1 use stratified transac-
tions (as defined in [8]) during service invocation; on the contrary, service S2 reads
the request message and sends the response message within a single transaction.

Forces and consequences. Services do not have to respond immediately; the delivery
of the messages is guaranteed by the communications infrastructure. If the execution
of the service operation fails, the process may not get an immediate response; additi-
onal error handling is required, often involving compensation logic. This pattern often
is the only choice in process-enabled SOA, e.g., when integrating legacy systems.

PAT primitives. As Figure 4 shows, Process Activity Transactionality (PAT) defines
two primitives for the SCL, transaction context sharing or Join (J), and transaction
context separation or New (N). If set to PAT-J, a process activity executes in the same
transaction context as the adjacent activities in the same process; it joins an existing
context. As a consequence, the process activity’s work might be rolled back if any
other process activity or service operation that participates in the same transaction
fails. With PAT-N, a process activity is executed in a new transaction context. Both
PAT-J and PAT-N are valid choices in all three composite patterns; PAT-J is shown
in Figure 3 and commonly used in practice. In TRANSACTION BRIDGE, PAT-N models
the MULTIPLE BRIDGES variant. Deciding for PAT-N is justified if two process activi-
ties should be independent from each other from a business requirement point of
view. Furthermore, some process models contain loops that are too complex to fit into

 Architectural Decisions and Patterns for Transactional Workflows in SOA 89

a single, short-lived system transaction (e.g., due to retries, refinement/completion
cycles, and service provider limitations).

CT primitives. We model three Communication Transactionality (CT) primitives,
Synchronous Non-Transactional (CT-SNT), Synchronous Transactional (CT-ST),
and Asynchronous Stratified (CT-AS). CT-SNT is used in the TRANSACTION ISLANDS

pattern. It represents a synchronous service invocation from the process activity with-
out propagation of the transaction context. As a consequence, the activity waits until
the call to the service returns. Once the service has been called, there is no possibility
to influence the work the service conducts. For example, the CT-SNT service invoca-
tion may cause the transaction to exceed the maximum duration configured in the
SCL, which may result in a transaction timeout and a subsequent rollback. With CT-
SNT, undoing the work of the service can not be included in this rollback.

CT-ST is required to build a TRANSACTION BRIDGE. It models a synchronous ser-
vice invocation with transactional context propagation. As a consequence, the process
activity waits until the call to the service returns; a rollback may occur after the
service execution has completed (the service participates in the SCL coordination).

CT-AS is part of the STRATIFIED STILTS pattern. It represents an asynchronous
service invocation without transaction context propagation. In CT-AS, long-running
services can be invoked without loosing transactional behavior, as the process
navigation is part of a stratified transaction [8]. At least three transactions are
involved in the invocation of a long-running service: the request message is sent in a
first transaction; in a second transaction, the message is received by the service
provider and the response message is sent; in a third transaction, the process activity
receives the response from the service. As shown in Figure 3, depending on the
service implementation, the second transaction (provider side) may be split up into
two transactions: receive the message and commit, and later on, send the response in a
new transaction. Such stratification details are described further in [8].

ST primitives. Two choices and corresponding primitives exist for the Service
Provider Transactionality (ST): join an incoming transaction (ST-J) or create a new
one (ST-N). ST-J is used in TRANSACTION BRIDGE, ST-N in TRANSACTION ISLANDS.
In ST-J, the service provider participates in the transaction of the caller (if a transacti-
on exists). As a consequence, process activity execution in the SCL and the invoked
service operation influence each other, e.g., when causing a rollback. In ST-N, the
service provider does not participate in the incoming transaction. As a consequence, if
the transaction in which the process activity runs is rolled back and the activity is
retried later (e.g., due to process engine-specific error handling procedures), the servi-
ce may operate on enterprise resources that have been modified in the meantime.

4.2 Sample Mapping of Primitives to BPEL/SCA Technology and Engine

As step (c) of our method, we now map the three PAT, CT, and ST primitives to
BPEL and SCA and other technology platforms. We expect that BPEL engines
provide settings that allow configuring the transactional behavior at least for invoke
activities. Services are invoked via protocols such as SOAP/HTTP, IIOP and JMS,
which differ in their support for transaction context propagation and (a)synchrony.
The transactional behavior of SCA components is defined by SCA qualifiers.

90 O. Zimmermann et al.

Qualifiers specify the behavior desired from the point of view of the service consumer
(SCA reference and SCA import) and the service provider (SCA interface, SCA
implementation).

(1) The PAT primitive from Figure 4 does not have a direct BPEL realization; typi-
cally, BPEL engine vendors add proprietary support for it. Furthermore, additional
standardization work is underway; for example, the BPEL for Java (BPEL4J) specifi-
cation introduces ACID scopes [2]. The exact semantics are BPEL engine-specific.
For example, during a rollback an engine may let the entire process fail, request reso-
lution by a human operator, or retry one or more activities at a later point in time (po-
tentially with a different transactional scope). While this is engine-specific behavior
outside of the scope of the BPEL specification, the process modeler must be aware of
it when selecting between PAT-J and PAT-N. (2) CT-SNT as a synchronous
invocation not propagating the transactional context maps to SOAP/HTTP or IIOP as
transport protocol. CT-ST maps to SOAP/HTTP with WS-AtomicTransaction support
or to IIOP. CT-AS can be implemented with JMS; however, no standardized WSDL
bindings exist at present. CT also determines the SCA qualifiers on reference, import,
and interface level, e.g., SuspendTx and JoinTx. (3) ST can be mapped to the SCA
qualifier Transaction on component implementation level.

Table 1 maps the three conceptual patterns from Section 4.1 to CT and ST
primitives and corresponding SCA qualifiers. At the time of writing, these qualifiers
resided in a non-standard namespace [7], not yet in one of the emerging SCA
standards [9]. The full mapping reference can be provided.

Table 1. Mapping of conceptual patterns to primitives and SCA qualifiers

 Primitive CT CT CT ST
 Qualifiers

Patterns

SCA reference
(BPEL process as com-
ponent invoking
others)

SCA import
(reference to
external ser-
vice)

SCA inter-
face (service
provider
component)

SCA implemen-
tation
(service provider
component)

TRANSACTION

ISLANDS
CT-SNT
DeliverAsyncAt=n/a
SuspendTx=true

CT-SNT
JoinTx
=false

CT-SNT
JoinTx
=false

ST-N (or ST-J)
Transaction
=local|
global|any

TRANSACTION

BRIDGE
CT-ST
DeliverAsyncAt=n/a
SuspendTx=false

CT-ST
JoinTx
=true

CT-ST
JoinTx
=true

ST-J
Transaction
=global

STRATIFIED
STILTS

CT-AS
DeliverAsyncAt
=commit
SuspendTx=false

CT-AS
JoinTx
=n/a

CT-AS
JoinTx
=n/a

ST-J
Transaction
=global

Mapping to IBM WebSphere Process Server (WPS). WPS [7] provides a BPEL
engine, which exposes processes and services as SCA components; in WPS, a BPEL-
based SCL connects to the underlying architectural layers via SCA. The SCA quali-
fiers from Table 1 govern the transactional context propagation and behavior.
Furthermore, PAT translates into a proprietary invoke activity configuration attribute
called transactionalBehavior which can be set to requiresOwn (PAT-N) and
participates (PAT-J). Two additional vendor-specific values exist, which we did
not model as primitives, commitBefore and commitAfter [7]. We implemented

 Architectural Decisions and Patterns for Transactional Workflows in SOA 91

this PAT mapping in a decision injection tool prototype. The tool reads the conceptual
pattern selection decision in and configures the WPS process model accordingly.

5 Related Work

Transactional workflows and business-level compensation have been studied extensi-
vely. However, existing work primarily focuses on advancing transaction middleware,
runtime protocol, and programming model design. Methodological and modeling
aspects for engineering transactional workflows from business requirements to concep-
tual design to low-level implementation details, however, are covered only insuffici-
ently. SOA-specific challenges such as logical layering (e.g., SCL) and loose coupling
are not addressed in detail. Reusable decision models or pattern catalogs do not exist.

Papazoglou and Kratz [10] propose a design approach for business transactions
based on standard business functions such as payment and delivery in supply chains.
Our approaches are complementary as they focus on different design decision points.

Witthawaskul and Johnson [16] use unit-of-work modeling to express transactional
primitives in a Model-Driven Architecture (MDA) context; they provide sample
transformers to Hibernate and J2EE (but not SOA). Our PAT and ST primitives are
inspired by their platform-independent transactionAttribute (UnitOfWork stereotype).

The WS-BPEL specification [14] defines operational semantics for executable
business processes, touching upon well-known transactional behavior without going
into details. For instance, it provides the concept of isolated scopes in order to
support exclusive access to particular resources. However, the BPEL specification
does not define which coordination protocols and service component models should
be used in order to comply with the specification; this is left to BPEL engine
implementations.

SOA patterns have begun to emerge over recent years. For example, Zdun and
Dustar define a pattern language for process-driven SOA [18]. In enterprise applica-
tion architecture literature, we find a service layer pattern and general coverage of
transaction management issues, but no coverage of workflow applications [3]. Hoh-
pe and Woolf introduce a PROCESS MANAGER mainly concerned with message
routing; their TRANSACTIONAL CLIENT allows sharing a transaction context over a
message queue, but does not cover forces and consequences in process-enabled
SOA [5]. The Patterns for e-business initiative [6] provides top-down design
guidance, but does not cover transaction management details of the EXPOSED PRO-
CESS MANAGER. There are workflow patterns [13], transactional workflow patterns
[1], and service integration patterns [11], which focus on control flow and
interaction structure, but do not address system transaction or business compensati-
on design. These patterns also do not cover SOA implementation technology details
such as WSDL transport bindings or BPEL and SCA deployment settings. Even if
the existing patterns do not cover transaction management design aspects in detail,
our decision and pattern-centric method leverages the pattern vocabulary and given
design advice as background information.

92 O. Zimmermann et al.

6 Summary and Outlook

In this paper, we introduced a new analysis and design method leveraging architectural
decision models and patterns in support of the full lifecycle of designing transactional
workflows, a particularly challenging problem in the construction of process-enabled
SOA. We motivated the need for such an approach by (a) identifying recurring,
reusable architectural decisions. We then (b) defined three conceptual patterns,
TRANSACTION ISLANDS, TRANSACTION BRIDGE, and STRATIFIED STILTS, consisting of
platform-independent primitives modeling system transactionality on (1) process
activity, (2) communications infrastructure, and (3) service provider level. We (c) de-
fined and implemented a mapping from the conceptual primitives to known technical
uses in BPEL and SCA and one particular BPEL/SCA engine. Such a full-lifecycle
analysis and design method allows sharing conceptual architectural knowledge across
technology and platform boundaries, but also takes platform-specific aspects into
account. This is required because legacy systems limitations constrain the decision ma-
king in practice, for example the transaction boundaries of existing software assets and
commercial packages implementing parts of the business process.

Future work includes documenting more variations and pattern selection guidance
for our three patterns. The three primitives can be mapped to more runtime platforms
such as the Spring framework. To extend the method, architectural patterns for other
recurring decisions, for example business-level compensation, should be documented.
Finally, we plan to investigate whether our design-time patterns can be represented as
runtime policies in emerging SOA runtimes, for example future versions of SCA.

References

[1] Bhiri, S., Gaaloul, K., Perrin, O., Godart, C.: Overview of Transactional Patterns:
Combining Workflow Flexibility and Transactional Reliability for Composite Web
Services. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM
2005. LNCS, vol. 3649, Springer, Heidelberg (2005)

[2] BPELJ: BPEL for Java, ftp://www.software.ibm.com/software/developer/library/ws-
bpelj.pdf

[3] Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley, Reading
(2003)

[4] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufman
Publishers, San Francisco (1993)

[5] Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison Wesley, Reading (2004)
[6] IBM Patterns for e-business: Exposed Serial Process application pattern,

http://www.ibm.com/developerworks/patterns/b2bi/at8-runtime.html#soa
[7] IBM WebSphere Business Modeler: Integration Developer, Process Server,

http://www.ibm.com/developerworks/websphere/zones/businessintegration
[8] Leymann, F., Roller, D.: Production Workflow. Prentice Hall, Upper Saddle River (2000)
[9] Open Service Oriented Architecture, http://www.osoa.org/display/Main/Home

[10] Papazoglou, M., Kratz, B.: A Business-aware Web Services Transaction Model. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, Springer, Heidelberg (2006)

[11] Service Integration Patterns, http://sky.fit.qut.edu.au/~dumas/ServiceInteractionPatterns

 Architectural Decisions and Patterns for Transactional Workflows in SOA 93

[12] SOAP 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508
[13] v.d. Aalst, W.M.P., ter Hofstede, A.: Workflow Patterns, www.workflowpatterns.com
[14] Web Services Business Process Execution Language (BPEL), http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel
[15] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-

wsdl-20010315
[16] Witthawaskul, W., Johnson, R.: Transaction Support Using Unit of Work Modeling in the

Context of MDA. In: Proc. of EDOC 2005, IEEE Press, Los Alamitos (2005)
[17] WS-AtomicTransaction: WS-Business Activity Framework, WS-Coordination,

http://www.ibm.com/developerworks/library/specification/ws-tx
[18] Zdun, U., Dustdar, S.: Model-Driven and Pattern-Based Integration of Process-Driven

SOA Models, http://drops.dagstuhl.de/opus/volltexte/2006/820
[19] Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-Oriented Architecture

and Business Process Choreography in an Order Management Scenario. In: OOPSLA
2005 Conference Companion, ACM Press, New York (2005)

[20] Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable
Architectural Decision Models for Enterprise Application Development. In: Overhage, S.,
Szyperski, C. (eds.) Proc. of QoSA 2007. LNCS, Springer, Heidelberg (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

