
S. Overhage et al. (Eds.): QoSA 2007, LNCS 4880, pp. 15 – 32, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Reusable Architectural Decision Models for Enterprise
Application Development

Olaf Zimmermann1, Thomas Gschwind1, Jochen Küster1,
Frank Leymann2, and Nelly Schuster1

1 IBM Research GmbH
Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{olz, thg, jku, nes}@zurich.ibm.com
2 Universität Stuttgart, Institute of Architecture of Application Systems

Universitätsstraße 38, 70569 Stuttgart, Germany
frank.leymann@iaas.uni-stuttgart.de

Abstract. In enterprise application development and other software constructi-
on projects, a critical success factor is to make sound architectural decisions.
Text templates and tool support for capturing architectural decisions exist, but
have failed to reach broad adoption so far. One of the inhibitors we perceived
on large-scale industry projects is that architectural decision capturing is regar-
ded as a retrospective and therefore unwelcome documentation task which does
not provide any benefit during the original design work. A major problem of
such a retrospective approach is that the decision rationale is not available to
decision makers when they identify, make, and enforce decisions. Often a large,
possibly distributed, community of decision makers is involved in these three
steps. In this paper, we propose a new conceptual framework for proactive deci-
sion identification, decision maker collaboration, and decision enforcement.
Based on a meta model capturing reuse and collaboration aspects explicitly, our
framework instantiates decision models from requirements models and reusable
decision templates. These templates capture knowledge gained on other projects
employing the same architectural style. As an exemplary application of these
concepts to service-oriented architecture shows, reusable architectural decision
models can speed up the decision identification and improve the quality of the
decision making. Reusable architectural decision models can also simplify the
exchange of architecture design rationale within and between project teams, and
expose decision outcome as model transformation parameters in model-driven
software development.

Keywords: Architectural decision, architectural knowledge, MDA, SOA.

1 Introduction

Having been neglected both in academia and industry for a long time, the importance
of architectural decision capturing is now widely acknowledged [15][20][28]. How-
ever, existing work focuses on capturing and representing decisions that have been
made already. Little emphasis is spent on anticipating the required decisions based on

16 O. Zimmermann et al.

experience from previous projects, on recommending proven decision making tech-
niques for these decisions, and on team collaboration aspects. In collaborative envi-
ronments, decision making responsibilities are assigned to various team members;
consensus must be found, and decision outcome communicated.

As a consequence, capturing architectural decisions remains a challenge for practi-
cing architects. Reported inhibitors for capturing decisions include no appreciation
from project sponsors, lack of time, and insufficient tool support [27]. Hence, intuiti-
on often is the only, but not always a suitable, decision driver; there is no systematic
reuse of already gained knowledge. This lack of rigor leads to acceptance issues and
quality problems with the software architectures under construction.

This paper aims to alleviate these problems by proposing a conceptual framework for
three decision capturing steps we observed and practiced on our own enterprise
application development projects [30][33]. We refer to these three conceptual steps as
decision identification, making, and enforcement. As we will explain, today’s practices
support each of these steps only insufficiently. In our framework, reusable decision
templates and semi-automatic decision model instantiation speed up the decision identi-
fication step. We aim to improve the quality of the decision making with decision de-
pendency modeling, catalogs of decision drivers, and recommendations for decision
making techniques. Finally, we propose decision injection into model transformations,
code aspects, and configuration policies as an additional means of enforcing decisions in
model-driven software development. A common meta model explicitly capturing reuse
and collaboration aspects connects the three steps. Our reusable decision modeling
framework is complementary to software engineering methodologies such as the
Rational Unified Process (RUP) [19]; decision making can become a dedicated part of
the work breakdown structure defined by the software engineering methodology of
choice. The framework also is complementary to traditional component-and-connector
modeling of software architecture design [3]; decisions explicitly refer to elements of
design models such as logical components.

The remainder of this paper is structured in the following way: Section 2 introdu-
ces background and related work; Section 3 presents the requirements and the meta
model for our conceptual framework for architectural decision modeling with reuse,
and how the framework facilitates decision identification, making and enforcement.
Section 4 applies our approach to the design of enterprise applications employing
Service-Oriented Architecture (SOA) as their primary architectural style. Section 5
concludes with a summary and an outlook to future work.

2 Background and Related Work

Our work extends several recent contributions to software architecture research,
which in turn are based on existing work in design decision rationale research. We
also draw upon the rich architectural knowledge captured by the patterns community.

In [20], Kruchten et al. define an ontology that describes the attributes that should
be captured for a decision, the types of decisions to be made, how decisions are made
(i.e., their lifecycle), and decision dependencies. In their work, Kruchten et al. also fo-
cus on the visualization of the decisions. In [6], Falessi et al. present the decision,
goal, and alternatives framework to capture design decisions. Their motivation is to

 Reusable Architectural Decision Models for Enterprise Application Development 17

increase the maintainability of a software system by identifying why a certain
approach has been chosen, and which design decisions have to be updated when the
system is changed. In our work we build on both of these approaches, especially the
ontology put forward by Kruchten and the use cases identified by Falessi, and apply
them to enterprise application development. Unlike existing work, we investigate pro-
active decision identification to ease the reuse of architectural rationale. We are
particularly concerned with collaboration and automation aspects.

Jansen and Bosch [15] view a software architecture as a composition of a set of de-
sign decisions. Their model for architectural design decisions focuses on the time
dimension, defining a dedicated entity representing architectural modifications occur-
ring over the software lifecycle. Other decision capturing templates exist in industry
and academia, which can also be viewed as informally specified meta models [1][28].
None of these models is rich enough to support decision identification in requirements
models, and there is no genuine support for decision reuse and collaboration. We
could not find an alignment of these works with software engineering methods and
patterns; platform-independent concerns are not separated from platform-specific
ones. Our work enhances the existing modeling ideas in these directions.

Design decision research in the 1990s [21] focused on facilitating the decision ma-
king step; explicit identification and enforcement steps are not present. For instance,
Questions, Options and Criteria (QOC) diagrams [22] raise a design question, which
points to the available solution options; decision criteria are associated with the opti-
ons. Selecting an option can lead to follow-on questions. Many active and passive De-
cision Support Systems (DSS) have been proposed. Most of the existing work focuses
on management decision support; however, Svahnberg et al. suggest a quality-driven
multi-criteria decision support method for software architecture selection [26]. This
method allows multiple team members to score already identified architecture candi-
dates based on weighted quality attributes. The scores lead to a suggestion and stimu-
late a consensus discussion. However, identification and reuse of required decisions,
available alternatives and relevant quality criteria are out of scope. QOC diagrams and
DSS complement our work and can be leveraged during our decision making step.

In the patterns community, several schools of thought and many pattern templates
exist [5][9][11]. Requirements linkage typically is informal and appears in textual
intent or forces sections. Many pattern languages remain on an abstract, conceptual
level; others specialize on a single problem or technology domain such as enterprise
application architecture [7] or process-driven SOA [29]. Patterns for process-driven
SOA describe how to automate the management of long-running business processes
such as loan approval processing or order management along supply chains (problem
domain) with workflow engines and communication middleware (technology do-
main). The activity flow in such processes can be specified using Business Process
Modeling (BPM) tools and implemented as a network of communicating Web servi-
ces [34]. In general, the relationship between architectural patterns and reusable deci-
sion models is synergetic. In this paper, enterprise application development serves as
the sample domain; hence, SOA patterns appear as conceptual architecture alternati-
ves in the reusable architectural decision model we introduce in Section 4.

18 O. Zimmermann et al.

3 A Conceptual Framework for Decision Modeling with Reuse

To overcome the limitations of the existing decision capturing approaches, we struc-
ture the architectural decision making process into three conceptual steps, decision
identification, making, and enforcement.1 Decision identification scopes the architec-
ture design work on a particular software development project. Requirements and
earlier decisions trigger the identification of individual decisions. During decision
making, architects select alternatives according to certain decision drivers, which
either are context-specific requirements or general software quality attributes [3][14].
This step is the core of the three-step process; making sound technical decisions on
software development projects is what practicing architects are primarily responsible
for. Decision enforcement deals with sharing the results of the decision making with
the stakeholders and the project team, and getting them accepted. Figure 1 illustrates:

Decision
Identification

Decision
Making

Decision
Enforcement

Decision Modeling Framework

Fig. 1. Decision making steps

Each of the three steps has its own specific requirements, all of which have to be
addressed by an underlying common meta model. In the remainder of this Section, we
first investigate these requirements, then derive the required meta model elements
from them and finally discuss how we support the identification, making, and
enforcement steps.

3.1 Requirements

Having interviewed close to 100 practicing software architects, we identified the
following design goals and use cases for our decision modeling framework.

Design goals. Supporting the decision identification, making, and enforcement steps
requires extending existing practices for building up architectural knowledge, particu-
larly if the decision making responsibilities are shared within and across teams.
Therefore, providing team collaboration support is a mandatory design goal – archi-
tectural decision making is a team effort, and for budgetary and other reasons, soft-
ware development projects today typically are carried out by geographically distribu-
ted teams. Furthermore, it should be possible to harvest architectural decisions from
completed projects; a small overhead for capturing fresh decisions is desirable.

Use cases. In [6], thirteen general use cases for design decision rationale capturing
are identified, covering a wide range of activities such as design problem detection,

1 Finer grained models exist, for example in systems theory [10] and DSS research [26].

 Reusable Architectural Decision Models for Enterprise Application Development 19

validation, documentation, coordination, and communication. With respect to our
design goals, they lead to the following seven concrete primary use cases:

1. Obtain architectural knowledge from third parties, e.g., company-wide enter-
prise architecture groups or practitioner communities in consulting firms.

2. Adopt and filter obtained decision knowledge according to project specific
needs: delete, update, and add architectural decisions and alternatives, and
manage dependencies between decisions.

3. Delegate decision making authorities to subsystem architects and lead deve-
lopers and support review activities with bidirectional feedback loops.

4. Involve network of peers in search of additional architectural expertise during
decision making, requiring a common understanding of problem and solution
space; hence, it is important to align terminology as much as possible.

5. Enforce decision outcome via pattern-based generation of work products, for
example documentation and code snippets serving as architectural templates.

6. Inject decisions into design models, code, and deployment artifacts.
7. Share gained architectural knowledge with third parties such as the actors

from use case 1, after having sanitized the project deliverables.

3.2 Meta Model Underpinning and Connecting the Framework Steps

To be able to support the use cases from Section 3.1 and automate parts of our three-
step process, a common meta model is required. Figure 2 shows our proposal, which
is inspired by previous research [1][15][20], the IBM e-business Reference Architec-
ture Framework used in [28] and our own decision documentation practices [30][33]:

Fig. 2. Meta model in conceptual modeling framework for architectural decision reuse

There are three core domain entities, Architectural Decision (AD), ADAlternative,
and ADOutcome. In line with [15], we separate the outcome from the background in-
formation, in our case to facilitate reuse. AD and ADAlternative provide background

20 O. Zimmermann et al.

information only; attributes such as problemStatement characterize an AD on an intro-
ductory level, while references and knownUses point to further information.

The rationale behind this modeling choice is that the same AD might pertain to
many elements in a design model, e.g., business processes and Web service
operations. The design model element types are referenced via the scope attribute in
the AD. ADOutcome instances then can be created dynamically, and refer to design
model element instances via a designModelReference. To give an example, an order
management process model might state that five business processes have to be imple-
mented as a set of composed Web services [30]; while attributes such as problem
statement, references, and recommendation are the same for all five processes, the
justification might differ, depending on the individual decision drivers. Decision
drivers include project-specific non-functional requirements (including environmental
issues such as skill availability) and general software quality factors. The patterns
community uses the term forces synonymously.

Closely related ADs are grouped into ADTopics, which can form a hierarchy. Each
ADTopic hierarchy is assigned to one of three ADLevels of abstraction, Concep-
tualLevel, TechnologyLevel, or AssetLevel. This novel structure is motivated by our ob-
servation that when designing enterprise applications, the technical discussions often
circle around detailed features of certain vendor products, or the pros and cons of
specific technologies, whereas many highly important strategic decisions and generic
concerns are underemphasized. These discussions are related, but should not be merged
into one. We therefore go through two refinements steps. This is good practice, e.g.,
Fowler [8] and RUP with its elaboration points recommend such an approach for UML
class diagrams used as design models. We adopted this recommendation for decision
models and made the three abstraction levels explicit in our meta model.

Several attributes such as responsible, takenBy and status model decision owner-
ship and lifecycle in response to the collaboration use cases from Section 3.1. The
phase attribute provides a link to general-purpose methodologies such as RUP. These
and all other model attributes can queried, e.g., when looking for all open decisions to
be made in the inception phase of an enterprise application development project.

Decision dependencies are explicitly modeled as associations between ADs. At
present, we use a single dependsOn dependency type, but are in the process of adop-
ting the taxonomy from [20]. To give an example, for our order management business
processes, a conceptual decision for a PROCESS AUTOMATION PARADIGM is required:
Should the processes be made executable in a WORKFLOW ENGINE, or be realized in
traditional PROGRAMMING LANGUAGE CODE? If a workflow engine is decided for, a
related technology decision is to agree on an EXECUTABLE WORKFLOW LANGUAGE,
e.g., BUSINESS PROCESS EXECUTION LANGUAGE (BPEL) [23]. Once BPEL has been
decided upon, a BPEL ENGINE can be selected, e.g., ACTIVE BPEL, IBM WEBSPHERE

PROCESS SERVER or ORACLE BPEL PROCESS MANAGER.2

3.3 Step 1: Decision Identification

Let us now investigate state of the art and the practice for the first step in our frame-
work, decision identification. Next, we discuss how our decision identification sup-
port can increase productivity and improve quality.

2 In this and all further examples, we set ADs and ADALTERNATIVES in THIS FONT.

 Reusable Architectural Decision Models for Enterprise Application Development 21

State of the art. Pattern languages [7][11], domain-specific plugins for software engi-
neering methods [16], technical papers and vendor documentation can be studied to
identify required technical decisions. In theory, these sources of information provide
deep coverage of all design concerns. However, the consumability of the vast amount
of information is a key issue. Architectural decisions are often hidden behind various
other material not targeting architects and therefore not being presented appropriately.

Project reality. During our decision modeling work with practicing architects, it
became apparent that ad-hoc decision identification solely based on personal experi-
ence is the state of the practice, as opposed to diligent literature studies, or systematic
reuse of knowledge already gained in a community. As a consequence, much time is
spent in early project phases (requirements analysis, high level design) to identify the
critical design issues, invent potential solutions, and agree upon decision criteria,
particularly if the team lacks experience. This time would be better invested in
studying the business problem to be solved, and in the actual decision making.

Our approach. As Figure 3 shows, we propose the initial decision model for a pro-
ject team to be instantiated from project-specific requirements models and reusable
decision templates. Reference architectures play a key role here, providing a common
technical vocabulary and architectural patterns for a certain domain [3]. Architectural
decisions cannot live in isolation; they have to be bound to design model elements,
which can be found in the reference architecture. We refer to this binding step as
decision scoping. In contrast to the pull model employed in practice today, we push
the initial to-do list to the architecture team. We expect this reuse approach to increase
productivity significantly, and to have a positive effect on quality. The decision
templates serve as a completeness check list which can be seen as an early, informal
review of the architectural work.

Reference Architecture
(incl. Reusable Decision Templates)

Requirements Model
(Machine and Human Readable)

x

Conceptual, Technology, and Asset Decision Model
(To-Do List for Project Team)

Partial Decision Identification
Automation

(push)

Fig. 3. Semi-automatic decision identification in requirements model and reference architecture

We do not aim to populate the entire design space; there will always be project-
specific design issues worth capturing ad hoc. However, proactive decision
identification works fine for many common design issues. For instance, in [34] we
captured 26 architectural decisions dealing with WEB SERVICES as INTEGRATION

TECHNOLOGY. These decisions cover interface design issues such as SELECTION OF

INTERFACE DESCRIPTION LANGUAGE and MODELING STARTING POINT (BUSINESS

REQUIREMENTS vs. EXISTING IT ASSET) These decisions were reused successfully on
several Web services projects conducted by others [12].

22 O. Zimmermann et al.

3.4 Step 2: Decision Making

The actual decision making is the second step of our three-step framework.

State of the art. Architecture Tradeoff Analysis Method (ATAM) [3], Attribute-
Driven Design (ADD) and Decision Support Systems (DSS), as well as many semi-
formal techniques such as Strengths, Weaknesses, Opportunities, Threats (SWOT)
tables can be used to support decision making. ATAM was originally positioned as an
evaluation and review instrument, but can also be used during earlier decision making
stages. Without customization, generic techniques such as ADD do not provide
reusable, domain-specific advice. Many decision making techniques require infor-
mation not yet available during the early elaboration stages or use the strategy to
address one Non-Functional Requirement (NFR) at a time and hence do not take side
effects caused by decision dependencies into account. As a consequence, not all
techniques are equally suited for all decision types.

Project reality. Architectural decision making is often perceived as an art rather than
part of an engineering process. Decisions makers often are biased; phrases like “this
has always worked for me” or “this is the industry trend” justify decisions instead of
sound technical judgment backed by tradeoff analysis activities or technical
evaluations. Frequently, a single driver is overemphasized. For instance, we have seen
architects use a simplistic “brain/heart/guts” model. In summary, personal experience,
preferences, and intuition often are the main decision drivers; external forces such as
vendor interests or strategic decisions motivated by potential future needs and
synergies have a large, not always beneficial, impact on the decision making. Con-
sequently, the technically best solution is not always selected. Such ill-motivated and
-fated decision making often is a root cause for project failure as the quality of the
produced software architecture degrades.

Our approach. Aiming to objectify the decision making, we integrate a collection of
proven decision support techniques into our framework, which accompany and use
the decision models created during the identification step. We also provide a list of
decision drivers per decision, e.g., highlighting specific NFRs and software quality
factors, but also non-technical factors such as political issues, license costs, and
available skills.

Depending on the type of decision to be made, we select from a continuum of sup-
port techniques, e.g., simple recommendations, semi-structured SWOT tables, ADD
[3], QOC diagrams [22], hands-on evaluations and formal alternative scoring algo-
rithms [26]. A benefit of this approach is that it provides the decision makers with a
technique well suited for a particular decision, as well as tangible advice that is
aligned with requirements and background information (e.g., vendor best practices).
Figure 4 illustrates.

In our opinion, it is neither feasible nor desirable to fully automate the decision
making. The importance of tradeoffs in specific contexts and design drivers naturally
makes full automation impossible; heuristic solutions are required. Matching of the
requirements contexts and decision drivers is important when reusing architectural
knowledge. In many circumstances, it is imperative to deviate from generic

 Reusable Architectural Decision Models for Enterprise Application Development 23

Decision Driver Catalog
(NFRs, SW Quality Factors,

Non-Technical Forces)

Conceptual, Technology, and
Asset Decision Model

(To-Do List for Project Team)

x

Decision Outcome
and Justification

Decision Making Support

(SWOT, ADD, QOC)

Fig. 4. Decision models, decision drivers and techniques for decision making

recommendations. Hence, the decision making support in our approach empowers the
architects to make informed decisions based on collective insight.

To give an example, using DEEPLY NESTED XML SCHEMA TYPES as MESSAGE

PARAMETER GRANULARITY was considered an anti-pattern in early Web services
literature. Confronted with a rich core banking domain model, we still decided for this
alternative in one of our projects [33]. We did so after having conducted a proof-of-
technology to mitigate interoperability and performance concerns, which we had
identified as key decision drivers. This decision justification became a reusable
architectural recommendation at a later stage, due to the positive experience gained.

3.5 Step 3: Decision Enforcement

State of the art. Traditional software engineering processes like RUP [19] address deci-
sion enforcement through stepwise design refinement down to code. The agile communi-
ty [4] emphasizes the importance of face-to-face communication. Maturity models such
as the Capability Maturity Model Integration (CMMI) [25] and domain-specific gover-
nance models [13] also can be used to ensure that ADOutcomes find their way into
running code. At build and deployment time, concepts such as code aspects and configu-
ration policies can be used to express architectural intent explicitly. However, complexity
and maturity concerns have limited a broad adoption of these two concepts so far.

Project reality. Coaching, architectural templates, and code reviews are the domina-
ting decision enforcement approaches today. All of them are perfectly valid. How-
ever, applying these approaches takes time and depends on the coding and leadership
skills of the decision makers. Personal architectural knowledge that remains tacit
often is lost during the maintenance phase of the application lifecycle, e.g., when the
team setup changes. Codifying architectural knowledge in design models is an
additional option when following Model-Driven Architecture (MDA) principles.
However, a key limitation of standard MDA is that model transformations often are
not configurable and therefore hard to adjust to project-specific architectural decisions
[32]. For example, many BPM-to-BPEL tools allow the user to make simple deci-
sions, e.g., regarding activity naming, but use fixed values for key aspects, e.g., sy-
stem transaction management settings. Consequently, development resources have to
be invested for changing the default values to the settings required in the particular
requirements context. Such disconnects and reconciliation problems between
architecture and development tools and artifacts can be observed frequently.

Our approach. The existing practices work fine for many decisions, particularly
those pertaining to micro design. As an additional option in our framework, machine-
readable decision models can be interpreted by model transformations and code

24 O. Zimmermann et al.

Requirements and
High-Level Design Models

Inject

Low-Level Design
Model, Code

Partial Decision Enforcement Automation
(model transformation, code aspects, configuration policies)

Decision Outcome
and Justification

Fig. 5. Decision enforcement via injection into model transformations and code generation

generators. Figure 5 illustrates this decision injection concept, which can help to
reduce unnecessary development efforts and ensure architectural consistency:

We have built a demonstrator for such an approach that uses Eclipse JET templates
to codify key architectural decisions dealing with non-functional concerns regarding
the implementation of executable business processes. For example, the demonstrator
injects ADOutcome for TRANSACTIONAL POLICIES such as REQUIRESOWN and
PARTICIPATES into the BPEL code generated by a BPM tool used to capture business
requirements. In this example, the decision drivers are the logical business transaction
boundaries, the physical resource protection needs, and the capabilities of the
involved legacy systems. The BPM tool user, typically a domain expert (business
analyst), can and should not be responsible for this architectural decision.

4 Application of Conceptual Framework to SOA Design

In this section, we describe how we applied the conceptual framework from Section 3
to enterprise application development and SOA design incrementally. First, we orga-
nized the decision points encountered on our own SOA projects [30][33] according to
the meta model from Section 3.2. As a second step, we factored in selected architectu-
ral knowledge from projects technically led by peers, leveraging an IBM-wide SOA
and Web services practitioner community with 3500 members. To verify that the con-
cepts are not limited to SOA as the primary architectural style, we cooperated with
architects specializing on information management, who documented their know-how
about information integration and data-centric architectures using our concepts. The
result is a reusable SOA decision model we refer to as SOA Design Space.

4.1 Requirements Model and Reference Architecture for SOA Design Space

In Section 3.3, we explained that we require a machine-readable requirements model
to be able to partially automate the decision identification step. When constructing
SOAs, analysis-level business process models, optionally annotated with NFRs, are
well suited for this purpose [17]. Object-oriented analysis artifacts such as use case
models also work well. Our minimum requirement for such models is that they have
to list the processes and activities to be realized as software services; the decision
identification support can then create realization decisions for these high-level
functional building blocks.

In the SOA case, we use the abstract SOA reference model from [2] as our refe-
rence architecture. It provides a conceptual, semi-strict layering scheme defining nine
layers: consumer, process, service, component, resource, integration, Quality of

 Reusable Architectural Decision Models for Enterprise Application Development 25

Service (QoS), information, and governance. It is possible to use other reference
architectures, as long as these provide a layering scheme and allow associating a
decision with the design model elements it pertains to. The selection of the concrete
REFERENCE ARCHITECTURE is an executive-level architectural decision in its own
right; making it is part of the project-specific adoption of the SOA Design Space.

If an analysis model has already been transformed into a high-level design model,
e.g., with support from BPM and SOA tools, we can further improve the decision
identification step because the business-level activities in the process model have
already been refined into high-level design artifacts such as candidate services. Fewer
decisions remain. An example for such a transformation is DATA CONTAINER

ASSIGNMENT, producing typed service operations as output. Furthermore, un-
necessary design points can be deleted. For example, if cycles have been removed
from the business process automatically, DEALING WITH CYCLIC PROCESS MODELS is
no longer relevant [17].

4.2 Organizing Principles in the SOA Design Space

To decompose the rather complex SOA design domain, we applied several proven
structuring principles such as separation of concerns and logical layering. Figure 6
outlines the overall structure, resembling the ADLevel hierarchy from Figure 2:

Fig. 6. UML packages for SOA Design Space and assignment to MDA levels

ADTopics are used as a fine-grained grouping mechanism on each MDA level. We
aim for high cohesion within and low coupling between ADTopics. In the Conceptual
Decision Model, we use the ontology from [20]. The reference architecture from [2]
organizes the ADTopics. Table 1 lists selected conceptual ADTopic nodes with
examples, comparing their identification, making, and enforcement characteristics:

Employing a consistent naming style for ADTopics, ADs, and ADAlternatives is
another principle to make models comparable; all elements created according to the
meta model from Section 3.2 have a unique identifier and a self-explaining short
name. Our terminology takes inspiration from service modeling [2], enterprise archi-
tecture [7] and SOA patterns [29] literature. By convention, alternatives are ordered
from common and recommended to exceptional; if present, fallback alternatives such
as CUSTOM CODING and OTHER appear last.

26 O. Zimmermann et al.

Table 1. Decision types in Conceptual Decision Model of SOA Design Space

Decision type (ADTopic)
with examples

Identification
(role, phase)

Decision Making
Support
(non-exclusive list)

Enforcement
(now, future)

Executive Decisions, e.g.,
PLATFORM SELECTION,
ARCHITECTURAL STYLE,
GOVERNANCE

Enterprise archi-
tect, before
project starts

SWOT analysis and other
consulting techniques
(high number of alterna-
tives, incomplete data)

Now and future:
Governance
processes,
limited tool support
(personal productivity
software)

Enterprise Architecture
Decisions (EADs), e.g.,
existence decisions:
TRANSACTION

MANAGEMENT,
SESSION MANAGEMENT,
LAYERING,
PERSISTENCE STRATEGY

[7]

Lead architects
and senior deve-
lopers, during
early project
phases (solution
outline, macro
design)

Literature research (e.g.,
patterns books, online fo-
rums) and “if-then” best
practices rules (often se-
veral valid choices, deci-
sion drivers semi-
concrete)

Now and future:
Architectural tem-
plates, coaching
Future: pattern tool-
kits, configurable
model transformations

Process Realization
Decisions (PRDs), e.g.,
property decisions:
MACRO VS. MICRO

FLOW, INSTANCE

CORRELATION,
SYSTEM TRANSACTION

BOUNDARIES,
COMPENSATION [32]

Technical archi-
tects, lead deve-
lopers, platform
and technology
specialists, during
macro and micro
design

Domain analysis and
design (challenging NFRs
and many other decision
drivers), to be supported
by QOC diagrams etc.
(choices can be justified
by concrete decision
drivers)

Now: Manual coding,
hard wired in MDA
model transformations
and code generators
Future: Decision
injection into code,
aspects, policies

Service Realization Deci-
sions (SRDs), e.g.,
MESSAGE EXCHANGE

PATTERN,
SERVICE GRANULARITY
[32]

Same as PRDs,
but different skill
set

Same as PRDs, but often
less alternatives because
decisions on higher levels
constrain choices

Same as PRDs

The SOA Design Space implements the abstract decision scoping concept from
Section 3.2, using the process and service abstractions from the selected SOA refe-
rence architecture. PRDs have to be taken per process to be realized in software,
SRDs once per process activity to be implemented as a software service.

Via decision tagging, ADs can be annotated with keywords to express cross-
cutting concerns, which then become additional dimensions in our SOA Design
Space. For instance, we tagged all decisions dealing with transactionality across
ADLevels and ADTopics so that they can be searched for.

There are many dependencies within and between the levels. To resume the
example from Section 3.2, PROCESS AUTOMATION PARADIGM and deciding between
abstract MESSAGE EXCHANGE PATTERNS such as REQUEST-REPLY and ONE WAY are
architectural decisions in the Conceptual Decision Model. In the Technology Decision
Model, concerns then are BPEL PROCESS DESIGN and SOAP MESSAGING VS.
REPRESENTATIONAL STATE TRANSFER (REST) as MESSAGE EXCHANGE FORMAT;
when integrating distributed components, the selection of a TRANSPORT PROTOCOL,
e.g., HTTP or MESSAGING, is another technology decision. Vendor-specific issues
appear in the Asset Decision Model. WEB SERVICE STACK SELECTION and deploy-

 Reusable Architectural Decision Models for Enterprise Application Development 27

ment issues such as selection of an open source or commercial SOAP ENGINE (e.g.,
APACHE AXIS) and engine-specific BPEL configuration decisions such as LONG OR

SHORT PROCESS LIFETIME and ACTIVITY TRANSACTIONALITY are examples for such
decisions [31]. The dependencies between the levels are modeled explicitly.

4.3 Example: Ws-01, Service Provider Type

Figure 7 illustrates a single AD, the selection of the SERVICE PROVIDER TYPE. It is a
screenshot of ADkwik, a Web 2.0 collaboration front end implementing the concepts
presented in this paper. We describe the user interface and knowledge engineering
concepts of ADkwik in detail in [24].

Fig. 7. Web services decision example: Ws-01, selection of SERVICE PROVIDER TYPE

The SERVICE PROVIDER TYPE decision is a SRD according to Table 1. On SOA
projects, this decision has to be made for each service to be implemented, it can be
identified in the analysis-level BPM model serving as input to the decision making
process; therefore, this decision has a “service” scope (the scope attribute is defined in
our meta model, see Figure 2). The phase attribute links the decision to a metho-
dology. In this case, “macro design”, a term from the method used by IBM Global
Services, suggests that this decision should be taken during the early, overall
architecture design. There is a problem statement motivating why this decision is
needed. In this example, it is one paragraph paraphrasing the motivation for this
decision found in the literature; in other cases, a simple question like “How to
correlate incoming user requests to server-side session objects?” is more appropriate.

28 O. Zimmermann et al.

For this decision, the coding effort, the memory footprint, and several other general
quality attributes are listed as particularly important decision drivers. The available al-
ternatives are listed as well, along with their pros, cons and known uses. In the
example, JAVA PLAIN OLD JAVA OBJECT (POJO), J2EE ENTERPRISE JAVA BEAN

(EJB), and PROVIDERS IN PHP, PERL, .NET have been identified. The references field
points to recommended reading, in this case two online resources. Dependencies to
and from other decisions are modeled explicitly and shown as relationships. For
example, the executive-level PLATFORM AND LANGUAGE PREFERENCES decision
clearly has an impact: the non-Java alternatives are no longer relevant if using Java is
imperative. As there are several WSDL-TO-JAVA CODE GENERATION WIZARDS, this
decision then can be enforced via code generation, assuming that the selected wizard
supports both POJO and EJB generation.

4.4 Initial Evaluation and Expected Benefits of SOA Design Space

As stated previously, the initial content of our SOA Design Space originates from
several successful large-scale SOA development projects conducted since 2001. In the
meantime, we have refactored the content and the meta model several times, which
led to the fine-grained ADTopic structure outlined in Section 4.2. At present, the SOA
Design Space consists of 160 reusable decision nodes.

We have already applied our SOA Design Space in the use cases specified in
Section 3.1, as well as for education, coaching, and architecture review purposes.
From the experience gained during this initial evaluation, we estimate that on average
one third of the early project phases such as RUP inception is spent on education and
identification of decision points. Some of that will always be required to give new
team members an opportunity to familiarize themselves with the project context, for
instance the business problem to be solved and the project logistics (tools, build envi-
ronment, etc.). Still, the feedback from early SOA Design Space users suggests that
much of this time can be saved with better tooling and pre-configured decision mo-
dels supporting decision identification in requirements models and reference
architectures.

In one case, the effort for the creation of a SOA principles deliverable decreased
from eight to five person days because thirteen out of fifteen required decisions were
present in the SOA Design space and could be reused. For instance, the architect on
that project reused the decision node from Figure 7. The decision drivers listed in
Section 4.3, particularly transactionality needs and ease of deployment, matched with
the project requirements, so that our recommendation to use EJBs if leveraging the
declarative EJB transaction model is adequate, and to use POJOs otherwise, was
directly applicable. The architect also reported that he found several decisions in the
SOA Design Space that he had not identified yet, but which turned out to be required:
for instance, the decision for a SERVICE CATEGORIZATION SCHEME to distinguish
technical utility services and logic-centric business services, which is described in
[18] and [30], became a key element of his SOA design.

A rigorous decision making process is often seen as a prerequisite to achieve hi-
gher maturity levels, e.g., in CMMI [25]. Decision dependency modeling makes
design errors visible and allows backtracking. A positive impact on software quality
can be expected, for example when combinations that do not work are detected or

 Reusable Architectural Decision Models for Enterprise Application Development 29

disabled before the mistake is even made. These positive effects are hard to quantify;
however, we have observed them on projects already.

Our decision enforcement approach leads to less manual reconfiguration and
coding needs and simplifies the model-code reconciliation, faithful to the original
vision of MDA. A positive impact on team communication and climate can also be
expected. Decision capturing becomes a shared responsibility; decisions that are
openly created, discussed, and justified often are easier to accept than dictated ones.

5 Conclusions and Outlook

In this paper, we presented a proactive approach to modeling and reusing architectural
knowledge for enterprise application development. As discussed in Section 2, our
approach extends existing proposals for retrospective architectural decision capturing.
It facilitates reuse of design rationale and team collaboration, two issues particularly
relevant in enterprise application development. In Section 3, we defined a conceptual
framework facilitating collaborative decision making supported by an extended meta
model. In this framework, three steps improve decision reuse and sharing of rationale:

• Semi-automatic decision identification, speeding up early project activities.
In this step, we combine requirements models with reference architectures
containing reusable decision templates to create an initial to-do list.

• More informed decision making via reusable collections of decision drivers,
good practices recommendations and other supporting techniques. In this
step, our framework promises to improve decision making rigor and quality.

• Improved decision enforcement in MDA via decision injection into parame-
terized model transformations and code generation, reducing development
efforts and simplifying communication, governance, and maintenance.

As demonstrated in Section 4, our approach already has proven to be practical for
BPM requirement models and SOA as architectural style; we compiled a SOA Design
Space with 160 reusable decision nodes. We could observe initial effort savings and
quality improvements on an early adoption project. Tool support is available.

The presented approach is generally applicable if several applications are built in
the same or a similar context and if full decision automation is an illusion. We require
the requirements model to be reasonably structured and at minimum one reference
architecture for the selected architectural style to exist. Enterprise application deve-
lopment and SOA meet these applicability criteria.

The complexity of the solution space and keeping the content up-to-date,
consistent, and easy to locate are key challenges for a broader adoption of the presen-
ted approach. In response to these challenges, we plan to investigate the integration of
architectural design and decision models even further, to involve a broader
practitioner community in future content engineering, and to leverage additional
results from other fields, e.g., knowledge management and architectural patterns.

We envision several advanced usage scenarios for the SOA Design Space. Project
managers can use it for planning and health checking purposes. Work breakdown
structures and effort estimation reports can be created from the decision model, as
open decisions correspond to required activities. If there are many, frequent changes,

30 O. Zimmermann et al.

or many questions are still unresolved in late project phases, the project is likely to be
troubled. Moreover, product-specific decision outcome can serve as input to software
configuration planning. Product selection and operational modeling decisions define
which software licenses are required, and on which hardware nodes the required soft-
ware has to be installed. The SOA Design Space can also serve as an enterprise archi-
tecture communication vehicle; enterprise architects can maintain a company-specific
instance of the SOA Design Space, consisting of a subset of decisions and alternatives
to give freedom of choice to individual project teams without sacrificing overall
architectural integrity. Finally, we plan to use the SOA Design Space as a prescriptive
micro method for SOA construction, complementing service modeling methods.

Future research work includes exploring several advanced concepts, for example
more expressive dependency modeling. Decision space pruning can rule out alternati-
ves based on the outcome of other decisions. We also plan to investigate whether
reusable architectural decision models can help improving the documentation of soft-
ware products, for example packages and middleware with many variation points.

Acknowledgments. We would like to thank Davide Falessi, Jonas Grundler, Gregor
Hohpe, Dirk Huppert, David Janson, Ed Kahan, Jochen Klein, Jana Koehler, Oliver
Kopp, Petra Kopp, Philippe Kruchten, Einar Landre, Ralp Mietzner, Sven Milinksi,
Frank Müller, Mike Papazoglou, Stefan Pappe, Cesare Pautasso, Willem-Jan van den
Heuvel, Harald Wesenberg, and Uwe Zdun for their input, provided through many
discussions and/or reviews of earlier versions of this paper.

References

[1] Abrams, S., Bloom, B., Keyser, P., Kimelman, D., Nelson, E., Neuberger, W., Roth, T.,
Simmonds, I., Tang, S., Vlissides, J.: Architectural Thinking and Modeling with the
Architects’ Workbench. IBM Systems Journal 45 (2006)

[2] Arsanjani, A.: Service-oriented modeling and architecture, IBM developerWorks (2004),
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1

[3] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley, Reading (2003)

[4] Beck, K.: Extreme Programming Explained. Addison Wesley, Reading (2000)
[5] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture – a System of Patterns. Wiley, Chichester (1996)
[6] Falessi, D., Becker, M., Cantone, G.: Design Decision Rationale: Experiences and Steps

Towards a more Systematic Approach. In: Workshop on Sharing and Reusing
Architectural Knowledge, ACM SIGSOFT Software Engineering. Notes 31, 5 (2006)

[7] Fowler, M.: Patterns of Enterprise Application Architecture. Addison Wesley, Reading
(2003)

[8] Fowler, M.: UML Distilled. Addison Wesley, Reading (2000)
[9] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1995)
[10] Hitchins, D.: Advanced Systems Thinking, Engineering, and Management. Artech House

Publishers (2003)
[11] Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison Wesley, Reading (2004)

 Reusable Architectural Decision Models for Enterprise Application Development 31

[12] IBM Corporation: SOA and Web Services Best Practices, Academy of Technology
Report (2004)

[13] IBM Corporation, SOA Governance and Management Method, http://www.ibm.com/
software/solutions/soa/gov/method

[14] International Standards Organization (ISO), ISO/IEC 9126-1:2001, Software Quality
Attributes, Software engineering – Product quality, Part 1: Quality model (2001)

[15] Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions.
In: Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture
(Wicsa 2005), IEEE Computer Society Press, Los Alamitos (2005)

[16] Johnston, S.: RUP Plug-In for SOA V1.0, IBM developerWorks (2005), http://www.ibm.
com/developerworks/rational/library/05/510_soaplug

[17] Koehler, J., Hauser, R., Küster, J., Ryndina, K., Vanhatalo, J., Wahler, M.: The Role of
Visual Modeling and Model Transformations in Business-driven Development. In:
Proceedings of the 5th International Workshop on Graph Transformation and Visual
Modeling Techniques, Elsevier, Amsterdam (2006)

[18] Krafzig, D., Banke, K., Slama, D.: Enterprise SOA. Prentice-Hall, Upper Saddle River
(2005)

[19] Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley, Reading
(2003)

[20] Kruchten, P., Lago, P., van Vliet, H.: Building up and reasoning about architectural
knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, Springer, Heidelberg (2006)

[21] Lee, J., Lai, K.: What’s in Design Rationale?. Human-Computer Interaction 6 (3 & 4)
(1991)

[22] MacLean, A., Young, R., Bellotti, V., Moran, T.: Questions, Options, and Criteria:
Elements of Design Space Analysis, Human-Computer Interaction 6 (3 & 4) (1991)

[23] OASIS. Web Services Business Process Execution Language (WSBPEL), Version 1.1
(2003), http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

[24] Schuster, N., Zimmermann, O., Pautasso, C.: ADkwik: Web 2.0 Collaboration System for
Architectural Decision Engineering. In: Proceedings of the Nineteenth International
Conference on Software Engineering & Knowledge Engineering (SEKE 2007), KSI (2007)

[25] Software Engineering Institute, Capability Maturity Model® Integration (CMMI),
 http://www.sei.cmu.edu/cmmi

[26] Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A Quality-Driven Decision
Support Method for Identifying Software Architecture Candidates. International Journal
of Software Engineering and Knowledge Management 13(5) (2003)

[27] Tang, A., Babar, M.A., Gorton, I., Han, J.: A Survey of the Use and Documentation of
Architecture Design Rationale. In: Proceedings of the 5th Working IEEE/IFIP Conference
on Software Architecture (Wicsa 2005), IEEE Computer Society Press, Los Alamitos
(2005)

[28] Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. IEEE
Software 22 (2005)

[29] Zdun, U., Dustdar, S.: Model-Driven and Pattern-Based Integration of Process-Driven
SOA Models, Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, http://drops.dagstuhl.de/opus/volltexte/2006/820

[30] Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-Oriented Architecture
and Business Process Choreography in an Order Management Scenario. In: ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2005), ACM Press, New York (2005)

32 O. Zimmermann et al.

[31] Zimmermann, O., Grundler, J., Tai, S., Leymann, F.: Architectural Decisions and Patterns
for Transactional Workflows in SOA. In: Krämer, B., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 81–93 (2007)

[32] Zimmermann, O., Koehler, J., Leymann, F.: The Role of Architectural Decisions in
Model-Driven Service-Oriented Architecture Construction. In: Proceedings of the
OOPSLA 2006 Workshop on Best Practices and Methodologies in Service-Oriented
Architectures, Unipub (2006)

[33] Zimmermann, O., Milinski, M., Craes, M., Oellermann, F.: Second Generation Web
Services-Oriented Architecture in Production in the Finance Industry. In: ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2004), ACM Press, New York (2004)

[34] Zimmermann, O., Tomlinson, M., Peuser, S.: Perspectives on Web Services. Springer,
Heidelberg (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

