
12 Industrial Case Study: Architectural
Knowledge in an SOA Infrastructure Reference
Architecture

By Olaf Zimmermann, Petra Kopp, and Stefan Pappe © 2009, IBM Corporation.

In this chapter, we present an industrial case study for the creation and usage of
architectural knowledge.

To establish the context of our usage of architectural knowledge, we introduce
business domain, service portfolio, and knowledge management approach of the
company involved in the case in a first section. In this first section, we briefly re-
view general architectural concepts such as viewpoints, methods, and reference
architectures. Not all of these concepts pertain to architectural knowledge explic-
itly; however, they helped us to create and leverage such knowledge successfully.
An understanding of our usage of these concepts helps to appreciate the central
role of architectural knowledge in the case. As a reader who is familiar with these
concepts and is primarily interested in our usage of architectural knowledge, as
opposed to its context in the case, you may want to skip this first section.

Next, we introduce a Service-Oriented Architecture (SOA) infrastructure refer-
ence architecture as a primary carrier of architectural knowledge in this company.
Moreover, we present how we harvested architectural knowledge from industry
projects to create this reference architecture. We also present feedback from early
reference architecture users. Finally, we conclude and give an outlook to future
work.

12.1 Middleware Services and SOA Infrastructure
Design in IBM Global Technology Services

This section gives an overview of IBM Global Technology Services and its mid-
dleware service product line. It introduces SOA infrastructures as the technology
domain the case study is concerned with, as well as supporting assets and the
knowledge management strategy employed by IBM Global Technology Services.

2 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

12.1.1 Company Overview: IBM Global Technology Services

IBM Global Services is one of the world’s largest business and Information Tech-
nology (IT) services providers. It is a rapidly growing part of IBM; at present,
over 190,000 professionals serve clients in more than 160 countries. IBM Global
Services comprises two major divisions: IBM Global Business Services and IBM
Global Technology Services (GTS) [9]. In this chapter we focus on GTS services
which pertain to IT infrastructure elements such as middleware.

GTS is structured into four business areas: Integrated Technology Services
(ITS), Maintenance and Technical Support Services, Strategic Outsourcing, and
Managed Business Process Outsourcing. These business areas support clients in a
number of ways: Some clients decide to develop and integrate applications them-
selves; for such clients, GTS provisions hardware and/or software and provides
maintenance support. Other clients seeks help in the design, implementation, and
management of IT solutions; ITS offers a portfolio of related service products. Fi-
nally, turnkey solutions and management of applications and infrastructure can be
provided to clients through outsourcing and managed services capabilities.

The case study presented in this chapter concerns the ITS business area, which
has a project-centric nature. We focus on SOA infrastructure services delivered in
IT strategy projects, as well as in the architecture, design, and implementation
phases of application development and integration projects.

12.1.2 From Labor-Based to Asset-Based Services: Service Products
and Service Product Lines

The ITS strategy builds on an asset-based business model. ITS ensures a globally
consistent service delivery and a high quality of project results by standardizing its
services as reusable assets [15]. Following this asset-based business model, the
success of a service project is no longer bound to the personal skills and experi-
ence of the individual project team members exclusively, but is ensured by the re-
use of predefined service assets. This is especially important for emerging geogra-
phies and new topic areas in which the skill and experience base has not been fully
established yet.

ITS calls its service assets service products, acknowledging their standardized
nature. This name also conveys the vision of services being developed, packaged,
documented, and maintained just like software products. Service products pre-
cisely define the nature and structure of the professional services in a globally
consistent fashion; they codify a significant part of the intellectual property of
ITS. The portfolio of service products spans a wide range of topic areas such as
middleware services including SOA infrastructure design and implementation,
systems and service management consulting and implementation services, but also
storage and server design including capacity planning, health checks and managed
services [9]. Service products respond to a shift of client preferences from custom
developed and integrated application islands to packaged, integrated, and pretested
end-to-end solutions.

 12.1 Middleware Services and SOA Infrastructure Design in IBM Global Technology
Services 3

ITS is organized into service product lines. Each service product line owns
multiple related service products jointly targeting a certain technology domain.
The sum of the service products across all service product lines supports rapid, as-
set-based project initiation and delivery and enables clients to focus their attention
on the core competencies differentiating them from their competitors; related sav-
ings can be invested in additional revenue-generating capabilities. The service
product lines in ITS complement hardware from the IBM Server and Technology
Group and software from IBM Software Group. This portfolio allows GTS to
combine services, hardware, software, and knowledge of business processes seam-
lessly and effectively, which helps to provide the desired end-to-end solutions.

Service products in all service product lines are built through strong invest-
ments in research, intellectual property creation and management, acquisitions,
and brand discipline – all of which are needed to create a competitive portfolio. In
this chapter, we focus on selected SOA infrastructure services which are offered
by the middleware service product line. Two examples of service products in this
service product line are “SOA Integration Services – Connectivity and Reuse” and
“Design and Implementation for WebSphere ESB”. We will introduce these ser-
vice products in the next section.

12.1.3 Middleware Service Product Line: SOA Infrastructure Services

On Service-Oriented Architecture (SOA) [12] projects the architectural views [13]
on a system under construction are synthesized. To do so, numerous functional
and non-functional requirements must be analyzed. During this analysis, func-
tional requirements are captured as use cases, stories, and business process mod-
els; non-functional requirements concern software quality attributes in areas such
as performance, scalability, and interoperability. During architectural analysis and
synthesis, many architectural decisions are identified, made, and enforced [27].

At the early elaboration points, the conceptual architectures of SOA-based sys-
tems are straightforward to define: They are variations of logically layered two- or
three-tier client-server architectures, which use message passing patterns to let
service consumers and service providers communicate with each other. Workflow
patterns are used to compose atomic services into business process-centric end-to-
end solutions. A service registry can serve as design time or runtime directory of
service providers available to respond to requests from service consumers [25].

An SOA infrastructure defines the physical viewpoint of an SOA. It concerns
the design, installation, and configuration of middleware components such as En-
terprise Service Buses (ESBs) which are responsible for service request routing,
adaptation, and mediation (brokerage), business process orchestration engines
performing service composition, and service registries and repositories supporting
service provider publishing and lookup. Individual service consumers and provid-
ers of various types (e.g., business function services and technical utility services)
are designed, developed, and then deployed into such SOA infrastructure, which is

4 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

supported by an underlying operating system, server and storage hardware, and
network.

Several characteristics make SOA infrastructures challenging to design:

• A SOA infrastructure usually hosts more than one application. These
applications might differ in their non-functional characteristics and might
change over time. An SOA infrastructure has to satisfy the requirements
of all hosted applications and anticipate future change (scalability).

• If the SOA vision of service virtualization is realized (i.e., architectural
principles such as provider location, platform, protocol, and format
transparency are promoted) 25] and the application logic is refactored
into a service pool, fixed application boundaries no longer exist, which
makes the infrastructure hosting the service pool challenging to design:
The number of service consumers and the amount, size, and structure of
the service invocation messages are not known upfront; these volume
metrics may even vary over time. The same holds true for service
providers and response message characteristics, respectively.

• There are rich and subtle dependencies between the architectural
elements. In an SOA, there are many service consumers which call
composite services and atomic service providers with the help of ESBs
and business process orchestration engines. These dependency relations
often have many-to-many cardinalities. Sometimes the dependency
relations can not even be specified upfront, e.g., when the involved
middleware provides dynamic, adaptive service invocation, integration,
and composition capabilities.

• SOA infrastructure may have to be able to support modern development
and deployment paradigms such as Web 2.0 mash ups, software as a
service, and cloud computing [22]. Such infrastructures face advanced
requirements such as multi tenancy, separation of duties, flexible and
measurable Service Level Agreements (SLAs), and the like.

Examples of related service products are “SOA Integration Services – Connec-
tivity and Reuse”, “SOA Integration Services – Design and Implementation for
WebSphere Message Broker”, and “SOA Integration Services – SOA Health-
check”. The first service product concerns service consumer-provider connec-
tivity, the second one a certain implementation platform for the ESB pattern, the
third one the analysis of an already existing SOA infrastructure.

Client project examples. To illustrate the technical domain of SOA infrastructure
design further, let us briefly introduce two client scenarios now.

An insurance company engaged GTS to construct an SOA and to design and
deploy an integrated value chain for its insurance brokers that would improve
communication and offer an optimized suite of insurance services. The GTS team
architected, deployed, and implemented a robust SOA infrastructure leveraging
IBM WebSphere software. The solution included an integration of the client’s ex-
isting IBM CICS backend running on zSeries nodes, along with implementation of
a clustered pair of IBM xSeries servers running the Microsoft Windows XP oper-

 12.1 Middleware Services and SOA Infrastructure Design in IBM Global Technology
Services 5

ating system to host a new ESB and service registry platform. With the new inte-
gration solution, the client is able to serve its partners and customers more effi-
ciently and has sharpened its competitive edge. The service product “SOA Integra-
tion Services – Connectivity and Reuse” was used to design and implement the
outlined solution.

A world-leading manufacturer of welding systems used SOA to cut its file sup-
port costs by 95 percent and improve its return-on-capital-employed ratio by
working with GTS to create an integration platform based on IBM WebSphere
Message Broker for Multiplatforms and a CISCO Linux driver. This new mission-
critical ESB integration platform allows the client to automate its delivery and re-
plenishment processes and to integrate its existing backend system and its new
supply chain management software. This implementation leveraged the service
product “SOA Integration Services – Design and Implementation for WebSphere
Message Broker”.

Having introduced the case study domain both from a business and from a tech-
nical perspective, let us investigate which role architectural knowledge plays in
the case.

12.1.4 Supporting Assets: Methods and Reference Architectures

To support its asset-based business model and the creation and usage of service
products, GTS leverages many supporting assets as carriers of architectural
knowledge. In this section, we introduce two particularly relevant types of such
assets, methods and reference architectures.

Methods. IBM Global Services has long recognized the importance of using soft-
ware engineering and architecture design methods [8] to provide repeatable means
of delivering proven solutions and to achieve project success and, in turn, client
satisfaction. A method framework called IBM Unified Method Framework (UMF)
organizes the work performed by practitioners and enables the design and delivery
of end-to-end solutions such as those outlined in the previous section.1 UMF pro-
vides prescriptive guidance on “what” needs to be created by a project team in
terms of common work products and “how” to produce these work products in
terms of activities, tasks, and roles as defined in [16].

UMF provides a common language among IBM practitioners delivering solu-
tions to clients, thus providing consistency across solutions. This requires a com-
mon structure: In response to this need, Unified Method Architecture (UMA) de-
fines a metamodel underpinning UMF. UMA was developed as a common
metamodel for the integration of several IBM methods including the Rational Uni-
fied Process (RUP), the IBM Global Services Method, Rational Summit Ascen-
dant, the IBM World Wide Project Management Method (WW/PMM), and others.

1 The predecessor of UMF, the IBM Global Services Method, has been used on client pro-

jects since 1998. The method changed its name several times during this period.

6 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

UMA defines a method framework consisting of method content and a process.
UMA represents a consistent and repeatable approach to accomplishing a set of
objectives based on a collection of techniques and practices:

• Method content represents the primary reusable building blocks of the
method that exist outside of any predefined project lifecycle (process).

• The process shows the assembly of method content into a sequence or
workflow (represented by a work breakdown structure) used to organize
a project and to develop a solution. A task is the smallest unit of work in
a UMA process; tasks can be aggregated into activities and phases.

Method content contains the following work products, which define the inputs
and outputs of tasks as method elements:

• Artifacts are tangible inputs and outputs that may come with examples or
a predefined template. They serve as basis for reuse. “Use case model”
and “software architecture document” are examples of such artifacts.

• Deliverables are a grouping of task outputs that represent value to a client
or other project stakeholders; typically they are the result of packaging
several other work products for sign-off and delivery.

• Outcomes are intangible results. They are used to convey the completion
of tasks and activities with results that are less tangible than artifacts
(e.g., trained practitioners, installed software, configured system).

Reference architectures. GTS leverages reference architectures to support the
service product development and usage. A reference architecture defines a to-be-
model of and blueprint for solutions recurring in a particular domain. It has a well-
defined scope, specifies the requirements the solutions satisfy, and captures related
architectural decisions. It is the objective of reference architectures to guide practi-
tioners through the architecture design activities and to communicate related best
practices (e.g., solution building blocks that worked for other practitioners who
encountered similar design problems on already completed projects).

Reference architectures may take different forms depending on their usage sce-
nario and target audience: A reference architecture used by a software vendor to
position products during presales differs from one used by a professional services
firm to divide labor and to exchange knowledge between projects. We use the
term in the latter form, faithful to the vision of Enterprise Solutions Structure
(ESS) [18]: An ESS reference architecture provides a consistent set of officially
approved, method-conformant work products (e.g., design artifacts) for a particu-
lar application domain and architectural style (here: enterprise applications and
SOA). To build an economy of scale, it is imperative to agree on a particular ter-
minology set and standardize the structure of and the relationships between the
work products (e.g., design artifacts). To accomplish these goals, the artifacts in
reference architectures must conform to the notation prescribed by the method
employed. In our context, UMF recommends the usage of the Unified Modeling
Language (UML) [19] for many artifacts.

 12.1 Middleware Services and SOA Infrastructure Design in IBM Global Technology
Services 7

Reference architectures take a governing role during service product creation,
ensuring architectural consistency and quality and avoiding undesired overlap.

12.1.5 Architectural Knowledge Management Strategy and Approach

GTS follows a hybrid knowledge management strategy; both personalization and
codification as defined in other chapters are practiced. Personalization is achieved
with the help of communities of practice [6] and Web 2.0 collaboration tools such
as application wikis [21], but also more traditional forms of technical exchange
such as education courses and conferences. In this case study, we primarily focus
on the codification part of the hybrid strategy. With respect to the architectural
knowledge views, our strategy primarily reflects the decision-centric view. Addi-
tionally, since the reusable knowledge captured is partly based on existing SOA
patterns, our approach also fits the pattern-centric view.

As outlined in the previous sections, the codification part of the hybrid strategy
is implemented by service products and reference architectures. Both service
products and reference architectures use the work products defined by UMF. The
development and lifecycle management of the service products is governed by an
asset creation approach called Integrated Service Offering Development (ISD).
ISD is both a management system and a process. The ISD management system
uses team-based management [3] for managing investments, portfolios, products,
and projects. The ISD process uses phases and decision checkpoints to drive a pro-
ject from initiation to completion. Furthermore, ISD leverages project manage-
ment methods to ensure that projects deliver the specified results and that they
complete on time and within budget. During development and lifecycle manage-
ment, a team of senior architects assures the technical quality and integrity of the
service product content.

In addition to the centralized ISD model, a supporting decentralized approach is
deployed to be able to leverage the experiences of the entire GTS practitioner
population efficiently: The Community Development Model (CDM) implements a
platform for practitioners from across the company to harvest assets from actual
client engagements which are then centrally vetted, hardened, and contributed to
the community as service product enhancements. CDM focuses on specific assets
identified by service product portfolio managers; contributions are called for regu-
larly. An incentive system is in place. These contributions save effort during ser-
vice product development and increase the service product quality. Additionally,
CDM shifts the minds of practitioners towards an asset and reuse culture.

In the remainder of the section, we focus on codification. We present one of the
reusable assets we created to implement this part of the hybrid knowledge man-
agement strategy in the middleware service product line of GTS.

8 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

12.2 A SOA Infrastructure Reference Architecture

SOA Infrastructure Reference Architecture (SOAI RA) is the reference architecture
of the middleware service product line of GTS. In this section we present the mo-
tivation for SOAI RA and give an overview of its artifacts. We also present an ar-
chitectural decision model and an operational model as exemplary artifacts.

12.2.1 Objectives and Artifact Overview

SOAI RA is a primary carrier of codified architectural knowledge for the middle-
ware service product line of GTS. It is the premier means of coordinating the crea-
tion of the technical content of the service products pertaining to middleware ser-
vices (e.g., service products dealing with SOA infrastructure design and
implementation). Using a well-defined set of UMF artifacts, SOAI RA is under-
stood by all service practitioners (as explained previously, UMF is the method
commonly employed on GTS projects). SOAI RA assumes SOA [12, 25] to be the
architectural style of choice and a middleware platform implementing the SOA
principles and patterns to be available. IBM Software Group provides such a plat-
form [10].

Objectives and usage scenarios. The overall objective of SOAI RA is to acceler-
ate the design and assure the quality of scalable, reliable SOA infrastructures
which host one or more SOA applications. SOAI RA steers the SOA design work
with consistent architectural principles, patterns, and best practices recommenda-
tions.

SOAI RA can be used to accelerate the solution outline, macro design, and mi-
cro design phases of a SOA project (these phases are defined in UMF) by shorten-
ing the time it takes to define and build the various architectural artifacts by reus-
ing (adopting) those already available in SOAI RA.

SOAI RA can also be used to facilitate technology and product selection activi-
ties as its architecture elements may serve as a link between enterprise architec-
ture efforts [17] and concrete SOA implementations on projects.

Reference architectures are particularly important if an asset- rather than a la-
bor-based strategy for service delivery is in place. As already outlined, GTS has
such strategy. In this setting, another objective of SOAI RA is to ensure architec-
tural consistency and compatibility between the service products: Service products
such as “SOA Integration Services – Connectivity and Reuse” and “Design and
Implementation for WebSphere ESB” must complement each other.

SOAI RA can also be applied to engagements that do not use any service prod-
uct, speeding up project delivery with templates and examples for important archi-
tectural artifacts and reducing technical risk through best practices reuse.

Artifact overview. SOAI RA follows a Model-Driven Development (MDD) [23]
approach, making use of the UML [19] tools IBM Rational Software Modeler and
IBM Rational Software Architect [10].

 12.2 A SOA Infrastructure Reference Architecture 9

A dual reference architecture consumption strategy is in place: SOAI RA users
can work with the models directly. Alternatively, they can study exported and
generated reports, which are available in textual form (i.e., HTML and PDF docu-
ments). SOAI RA concentrates on models for the following UMF artifacts:

• System context
• Use case model
• Non-functional requirements
• Architectural decisions
• Logical Component Model (CM)
• Physical Operational Model (OM)

The system context diagram shows the major relationships to external systems
and resources that are leveraged within SOAI RA. When UMF is employed, UML
or informal rich pictures are used to create system context diagrams. The Use
Case Model (UCM) captures how practitioners work with SOAI RA, but also
shows how humans users or applications interact with an SOA infrastructure (use
case is a UML term). Non-Functional Requirements (NFRs) define the quality at-
tributes [11] of the system and the constraints under which the system must be
built. Constraints are technical limitations imposed upon a solution by external
forces. NFRs are typically captured in free form or in structured text. In SOAI RA,
the NFR artifact specifies selected quality attributes to consider on SOA projects,
e.g., interoperability.

Logical component modeling per se is the responsibility of an application archi-
tect, often based in a professional services firm such as IBM Global Business Ser-
vices, providing business analysis, design and development services (among oth-
ers). The SOAI RA component model captures the application and middleware
components that are relevant for SOA infrastructure design: When creating a
specified OM (see below), infrastructure architects must have an understanding of
the logical components hosted by the infrastructure under design. UMF recom-
mends using UML component and/or profiled class diagrams as CM notation.

The operational model (OM) is a key artifact in SOAI RA. UML or informal
rich pictures are commonly used to create OMs. SOAI RA provides a conceptual
OM and a specified OM; it does not go down to a physical OM level of elabora-
tion. The two SOAI RA OMs serve as an umbrella for and bridge between the
physical OMs which are defined in service products.2

Architectural decisions is another key work product in SOAI RA. For SOAI
RA we adopted the metamodel and the decisions from the SOA Decision Modeling
(SOAD) project [29]. Unlike most reference architectures, SOAD captures the de-

2 The three-level OM hierarchy supports an iterative and incremental refinement approach

to infrastructure design, which is in line with the advice given by common architecture
design methods [8]. For instance, a technology-neutral design of locations, nodes, and
deployment units (conceptual OM) should be established before platform-specific ESB
communication protocols and products such as HTTP or Java Massage Service (JMS) are
selected (specified OM) and configured in the selected ESB product (physical OM) [4,
 24].

10 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

cisions to be made during adoption of the reference architecture on a particular
project (which we refer to as design issues), not those already made during the
creation of the reference architecture (decision outcomes). This focus shift helps to
tailor SOAI RA according to project needs: Not all SOA infrastructure design pro-
jects require all SOAD decisions as not all SOA patterns such as ESB, service
composition, and service registry are always used. Selecting such patterns and re-
lated implementation platforms is part of the decision making.

The following figure illustrates the artifacts and viewpoints in SOAI RA. For
instance, the system context, the use case model, and the NFR artifacts all belong
to the scenario viewpoint in Kruchten’s 4+1 view model [13], whereas the CM be-
longs to the logical viewpoint and the OM to the physical viewpoint.

 The figure also shows that architectural decisions are not only used in their tra-
ditional role of capturing design rationale and decisions made, but also to organize
the reference architecture. Bidirectional links to and from the level 1 CM and the
conceptual OM are maintained. We provide more information about this central
role of the decision model and the three levels of architectural decisions (concep-
tual, technology, and vendor asset level) in the following section.

SOAI RA (Scenario VP)

Use Case Model (UCM)

Operational Model (OM)
(Conceptual Level)

SOAI RA (Logical VP) SOAI RA (Physical VP)

Non-Functional Requirements (NFRs)

Component Model (CM) L1

System Context Diagram

Component Model (CM) L2

Component Model (CM) L3

Operational Model (OM)
(Specified Level)

Operational Model (OM)
(Physical Level)

Architectural Decisions
Conceptual/Technology/Vendor Asset Level

Service Product, Project

Project

VP – Viewpoint
L – Level

Figure 1. SOA Infrastructure Reference Architecture Overview

 12.2 A SOA Infrastructure Reference Architecture 11

12.2.2 Decision Viewpoint: SOA Decision Modeling (SOAD)

SOAI RA adopted the results of the SOA Decision Modeling (SOAD) project.
SOAD is an industrial research and knowledge engineering project we have been
conducting since January 2006. It has three project objectives and types of results:

1. Defining the concepts of a decision-centric architecture design method,
e.g., a knowledge domain metamodel optimized for reuse and collabora-
tion. These concepts are introduced in separate publications, e.g., [29].

2. Providing reusable decision content (architectural knowledge) for SOA
projects taking the form of a Reusable Architectural Decision Model
(RADM) for SOA which is instantiated from the metamodel. Its content
originates from several large-scale SOA projects conducted since 2001.
Excerpts from this RADM are featured in other publications, e.g., [29].
The full model became part of SOAI RA.

3. Demonstrating how the decision modeling concepts can be implemented
and how the decision content can be managed collaboratively with the
help of a tool. Architectural Decision Knowledge Wiki [20], made pub-
licly available in March 2007, serves this purpose.

We now review the SOAD concepts, content, and tool contributions that are
particularly relevant within the context of our case study and this chapter [21 29].

Concepts. The knowledge domain metamodel is the SOAD concept most relevant
for this case study. It remained stable since September 2006 except for minor revi-
sions such as renaming classes and attributes.

We distinguish decisions made and decisions required to facilitate reuse: An
ADIssue instance informs the architect that a single architecture design problem
has to be solved. ADAlternative instances then present possible solutions to this
problem. ADOutcome instances record an actual decision made to solve the prob-
lem including its rationale. Closely related ADIssues are grouped into AD-
TopicGroups, which form a hierarchy. Dependencies between ADIssues are mod-
eled as a dependsOn association; in [29], we define more dependency relations.

The metamodel is shown in the following figure:

12 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

Figure 2. SOAD metamodel (source: [29])

ADIssue and ADAlternative provide reusable, project-independent background
information about decisions required: The problemStatement characterizes an
ADIssue on an introductory level, while backgroundReading and knownUses
point to further information. The decisionDrivers attribute states types of NFRs,
including software quality attributes and environmental constraints such as budget
and skill availability; the patterns community uses the term forces synonymously.
The role and phase attributes serve as a link to methods such as UMF. A recom-
mendation attribute conveys subjective information, which may be a simple rule
of thumb (“best practice”), a weighted mapping of forces to alternatives, or a
pointer to a more complex analysis process to be performed outside the decision
model. The recommendation should refer to decision drivers and pros and cons of
alternatives. With the backgroundReading attribute, supporting material such as
primers and tutorials can be referenced.

ADOutcome instances capture project-specific knowledge about decisions
made: The justification information refers to actual requirements (“sub-second re-
sponse time in customer interface”), as opposed to the ADIssue-level decision
drivers which only list types of requirements (“performance, i.e., response time
and throughput”). These two aspects of the knowledge have different reuse char-
acteristics: the ADIssue information has even more reuse potential then the pro-
ject-specific ADOutcome rationale. A second reason for factoring out ADOut-
come as a separate entity is that the same ADIssue might pertain to many elements
in a design model, e.g., business processes and service operations in SOA. There-
fore, types of logical and physical design model elements are referenced via the
scope attribute in the ADIssue. ADOutcome instances then are created dynami-
cally on projects, and can refer to design model element instances via their name.

 12.2 A SOA Infrastructure Reference Architecture 13

To give an example, a business process model might state that three “customer
enquiry”, “claim check”, and “risk assessment” business processes have to be im-
plemented in an insurance industry case. One ADIssue is to select an
INTEGRATION TECHNOLOGY to let the business activities in each of the three busi-
ness processes interact with other systems, with ADAlternatives such as WEB
SERVICES and RESTFUL INTEGRATION. Problem statement (“Which technology
should be used to let the business activities in the business process communicate
with Web services and legacy systems?”) and decision drivers (“interoperability”,
“reliability”, and “tool support”) are the same for all three business processes.
Hence, it is sufficient to create a single ADIssue instance which has a “business
process” scope. This value refers to a SOA-specific type of design model element.

Project-specific decision outcome information such as the chosen alternative
and its justification depends on the individual requirements of each process, e.g.,
“for customer enquiry, we decide for WEB SERVICES as Java and C# components
have to be integrated in an interoperable and reliable manner, and we value the
available tool support” and “for risk assessment, we select RESTFUL
INTEGRATION because not all of the involved backend systems provide a SOAP
message interface described by a WSDL contract”. Hence, three ADOutcome in-
stances are created and associated with the same ADIssue. These instances capture
the process-specific decision and its rationale. They refer to the actual business
processes in their name attributes (“customer enquiry”, “claim check”, and “risk
assessment”).

Content. The RADM for SOA is organized into levels and layers: An overarching
executive level comprises issues regarding requirements analysis and technical de-
cisions of strategic relevance. A conceptual level, a technology level and a vendor
asset level follow [29]. Architectural layers further structure the RADM. The next
figure shows the resulting model structure (each box represents an ADTopicGroup
comprising ADIssues dealing with the same topic area on one refinement level):

14 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

Application Architecture Infrastructure Architecture Example Application Architecture Infrastructure Architecture Example

Business
Requirements

Decisions

Business
Requirements

Decisions

Conceptual Level

Technology Level

Vendor Asset
Level

Executive
Decisions

Physical VP:
Conceptual
Decisions

Physical VP:
Conceptual
Decisions

Logical VP:
Conceptual
Decisions

Logical VP:
Conceptual
Decisions

Physical VP:
Technology
Decisions

Physical VP:
Technology
Decisions

Logical VP:
Technology
Decisions

Logical VP:
Technology
Decisions

Physical VP:
Vendor/Asset

Decisions

Physical VP:
Vendor/Asset

Decisions

Logical VP:
Vendor/Asset

Decisions

Logical VP:
Vendor/Asset

Decisions

e.g. Message Exchange Pattern

e.g. Transport Protocol

e.g. DataPower Configuration

Component Layer

Service Layer

Process Layer

Integration Layer

Q
oS

Layer

Consumer Layer

Resource Layer

Component Layer

Service Layer

Process Layer

Integration Layer

Q
oS

Layer

Consumer Layer

Resource Layer

Component Layer

Service Layer

Process Layer

Integration Layer

Q
oS

Layer

Consumer Layer

Resource Layer

Component Layer

Service Layer

Process Layer

Integration Layer

Q
oS

Layer

Consumer Layer

Resource Layer

Component Layer

Service Layer

Process Layer

Integration Layer

Q
oS

Layer

Consumer Layer

Resource Layer

Component Layer

Service Layer

Process Layer

Integration Layer

Q
oS

Layer

Consumer Layer

Resource Layer VP – Viewpoint

Executive Level

e.g. Platform Preferences

Figure 3. Layers and levels in RADM for SOA (source: [29])

The same top-level topic groups are defined on the conceptual, the technology,
and the vendor asset level. The level and topic group hierarchy serves as a table of
decision model content. The hierarchical structure is motivated by our observation
that the technical discussions during SOA design often circle around detailed fea-
tures of certain vendor products, or the pros and cons of specific technologies,
whereas many highly important strategic decisions and conceptual concerns tend
to be underemphasized. These discussions are related, but should not be merged
into one; they reside on different refinement levels. Separating design concerns in
such a way is good practice; e.g., RUP with its elaboration points recommends a
similar incremental approach for UML class diagrams used as design models. We
adopted this recommendation for decision models and made the three refinement
levels explicit in the RADM for SOA.

There are topic groups for seven logical SOA layers, consumer, process, ser-
vice, component, resource, integration, and QoS layer, which are introduced in
[1]. Two topic groups on each level contain issues pertaining to the logical and
physical viewpoint that can not be assigned to any layer. The model can be tai-
lored and irrelevant parts removed, e.g., if only issues dealing with processes, but
not issues dealing with ESB integration are of interest in a particular project con-
text. About a dozen subject area keywords are defined and expressed as topic tags,
e.g., “session management”, “transaction management”, “workflow”, and “error
handling”.

The next figure is an excerpt of an ADIssue description in the RADM for SOA:

 12.2 A SOA Infrastructure Reference Architecture 15

Decision drivers: Parameter understandability; ease of use and reuse; maintainability;
capabilities of BPEL, SOAP, WSDL, XML processors and interoperability; network

topology; number of deployment artifacts and generated code structure

Scope:
Service Operation

ADIssue name: Msg-03, InMessageGranularity (Conceptual Level)

Problem Statement: How many message parts should be defined in the service contract?
How deep should the part elements be structured?

Background Reading: No published patterns available yet that we could reference here.

ADAlternative 1:
Dot pattern

Single scalar
parameter

Easy to process for
SOAP/XML

engines, much
work for

programmer

Phase:
Macro Design

Recommendation: All alternatives have their place, depending on the decision drivers.
Base decision on layer and service type. Avoid overly deep nesting of data structures

unless you want to stress test the XML processing. Minimize message verbosity.

Identified in:
Service
Model

ADIssue:
Service

Type

Enforced by:
WSDL, XSD

Contracts

ADAlternative 2:
Bar pattern

Single complex
parameter

Deep structure and
exotic types can

cause
interoperability

issues.

ADAlternative 3:
Dotted line pattern

Multiple scalar
parameters

Handled by all
common engines,
some programmer

convenience.
ADIssue:

Enterprise
Data Model

ADIssue:
Business

Granularity

ADAlternative 4:
Comb pattern

Multiple complex
parameters

Combination of
options 2 and 3,

biggest overhead
for processing

engines.

ADIssue:
Out Message
Granularity

ADIssue:
Operation
To Service
Grouping

ADIssue:
XML

Profiling

ADIssue:
WDSL, XSD

Editor
Selection

Role:
Service Modeler

Architectural Decision (AD) Issue

Figure 4. Sample issue and alternatives in SOAI RA

The issue deals with the INMESSAGEGRANULARITY of a service operation. This
issue qualifies as a an architectural decision to be included in the RADM for SOA,
as its outcome has a significant impact on the quality attributes of the SOA-based
system under construction and the issue recurs for each service operation.

In many cases, the ADAlternatives of an ADIssue in the RADM for SOA refer
to an already existing patterns, e.g., those documented by Buschmann et al. [2], by
Fowler [5], or by Hohpe and Woolf [7]. In this case, no patterns are available yet;
we plan to publish the descriptions of the issue and its pattern alternatives (DOT,
BAR, DOTTED LINE, and COMB) in the future.

At present, the RADM for SOA consists of 86 ADTopicGroups and 389 ADIs-
sues with about 2000 ADAlternatives. The knowledge base is still growing, now
at a slower pace than in the beginning of the project. While this growth could con-
tinue infinitely, we plan to freeze the knowledge engineering once the 500 most
relevant issues have been compiled. The knowledge base will still have to be re-
viewed periodically to ensure that the contained information remains up to date.
Issues and alternatives will become obsolete as technology evolves; new ones will
be required. The SOAD level and layer structure helps to organize these activities
and reduce the related effort; conceptual knowledge dates at a slower pace than
that on the technology and on the vendor asset level.

Tool. Architectural Decision Knowledge Wiki is a Web-based collaboration sys-
tem and application wiki which implements the SOAD metamodel as well as addi-
tional concepts. It supports about 70 uses cases. The tool is featured in [21, 29].

16 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

12.2.3 Physical Viewpoint: Operational Model

Applications employing SOA as their architectural style require a reliable SOA in-
frastructure which complies with the corporate-level technology standards and
runs inside existing or new operating environments such as datacenters. The IT
organizations of enterprises must provide such SOA infrastructures.

SOA infrastructures must be able to support the development, deployment, and
management of service consumers and providers, and host SOA middleware such
as ESBs, business process orchestration engines, service registries, but also com-
ponents in application servers which implement service consumers and providers
in some programming language (e.g., BPEL, C#, or Java).

The OM in SOAI RA is positioned to rapidly design such SOA infrastructures,
and plan the capacities of the underlying hardware (i.e., server and network re-
sources). Examples of such hardware capacity aspects are CPU speed, main mem-
ory size, disk space, and network adapter capacity (throughput).

An OM may be defined for a particular IT system, designed to meet specific
functional and non-functional requirements. An example is a WebSphere Process
Server [10] environment required to support service composition (business proc-
ess choreography) in a Customer Relationship Management (CRM) solution. In
such a case, the specified OM (see previous section) defines all functional and
non-functional characteristics of the model elements, while the physical OM pro-
vides a detailed configuration and capacity plan, which serves as a blueprint for
the acquisition, installation, and subsequent maintenance of the infrastructure re-
sources (i.e., server hardware, network equipment, and middleware).

In a reference architecture context, an OM can describe a template of how
(parts of) an IT infrastructure may be constructed in order to satisfy some general-
ized set of functional and non-functional requirements. In this case, the OM leaves
placeholders, requiring tailoring and integration with other partial OMs to satisfy a
particular set of concrete requirements. The purpose of such a generalized OM
may be to support enterprise-wide standardization of all SOA infrastructure envi-
ronments (e.g., WebSphere Process Server). Such standardization simplifies pro-
curement, education, and systems management.

SOAI RA adopts the OM notation and terminology defined in the IBM Archi-
tecture Description Standard (ADS) [24] and the OM technique defined in IBM
UMF [4]. Hence, three perspectives are taken during the design of the OM in
SOAI RA, answering the following questions:

• Which network zones are given or required (e.g., locations, security zones
created by application gateways and transport-level firewalls)?

• Which hardware nodes appear in these network zones?
• Which presentation, execution, and data deployment units are deployed

on these nodes to host application and middleware components?

As motivated in the SOAI RA overview above, SOAI RA contains a conceptual
OM and a specified OM; the physical OM has to be developed on each project
adopting SOAI RA. Hence, SOAI RA provides zone, node, and deployment unit

 12.2 A SOA Infrastructure Reference Architecture 17

definitions at the conceptual level and details those by adding NFR and other in-
formation at the specified level.

The following figure is a screen caption of a UML class diagram in IBM Ra-
tional Software Modeler. The classes are annotated with a stereotype called
<<ConceptualNode>> which indicates that they represent an OM concept. The
nodes host deployment units, which correspond to SOA infrastructure elements.
For instance, the “application server node” hosts a “service integration bus” unit.

Figure 5. OM to (SO)AD linkage in SOAI RA

The figure also shows that nodes in the conceptual OM are linked to SOAD is-
sues, which are made available via the Architectural Decision Knowledge Wiki
tool (as introduced in the SOAD overview in the pervious section). In the exam-
ple, the application server node in the conceptual OM has issues such as
COMPONENT CONTAINER ASSET and WEB SERVICES PROVIDER ASSET attached.
This link between OM elements and SOAD issues is a key feature in SOAI RA: It
uses the scope attribute defined in the SOAD metamodel introduced previously.

We follow the same approach to link logical components and related issues.
With this approach, we make architectural knowledge available in the tool the ar-
chitect works with during design; however, we do not model the rather rich issue
descriptions in the same UML model, but couple architecture elements and related
issues loosely to ensure flexibility and usability of the two parts of the architec-

18 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

tural knowledge, logical CM and physical OM on the one hand (design artifacts)
and architectural decision knowledge on the other hand (rationale).

12.2.4 Summary of Approach and Benefits

The UMF artifacts in reference architectures represent the recommended architec-
tural to-be model to begin with (and aim for) when delivering service projects.
They codify many lessons learned and best practices from projects around the
world. To harvest such lessons learned and best practices, project-specific deliver-
ables get assessed for applicability, are quality assured, sanitized, and hardened
into artifacts generally reusable in similar projects. In short, reference architec-
tures are a way to make collective project experiences and knowledge explicit and
available to a wide audience, i.e., all GTS practitioners.

Reference architectures pave the way for the consistent development of differ-
ent service products. SOAI RA is the reference architecture of the GTS middle-
ware service product line; it makes service products combinable. This is important
since client projects can become quite large and complex and often deploy more
than a single service product. SOAI RA and other reference architectures not only
make service products combinable, but also offer an integrative approach across
IBM hardware, software, and services products: They simplify the end-to-end so-
lution design by establishing modeling standards (e.g. naming conventions), which
are also shared between presales and project delivery functions.

GTS practitioners benefit from SOAI RA in several ways: First and foremost,
they learn from experienced peers how to model a solution, how to create the arti-
facts required by UMF, and how to design an SOA infrastructure properly (educa-
tion use case). In this regard, a reference architecture codifies tribal knowledge.

A reusable asset that meets the wants and needs of practitioners and is easy to
adopt can increase productivity: In particular, SOAI RA aims to accelerate the
early project activities, allowing practitioners to tailor the provided artifacts ac-
cording to the client-specific requirements and project context they are confronted
with. The more of the hard design and modeling problems have already been
solved in a reusable, standardized fashion, the more time practitioners can spend
with their clients to resolve the particularly relevant, case-specific design issues.

Furthermore, reference architectures have a quality assurance effect: Best prac-
tices from projects around the world are captured in the reference architecture.

Moreover, SOAI RA improves collaboration both within GTS and across IBM
lines of business: It facilitates the knowledge exchange between projects and
within a community of practice by establishing a common vocabulary.

Finally, the model-driven approach in SOAI RA opens the door to automation:
Due to the standardization of target architecture, it becomes possible to generate
parts of the code and deployment artifacts directly from the models.

Having summarized the motivation, anatomy, and benefits of SOAI RA, let us
now present how we harvested its architectural knowledge from projects. We will
return to the benefits when presenting user feedback in the second next section.

 12.3 Harvesting SOA Decision Knowledge from Projects 19

12.3 Harvesting SOA Decision Knowledge from Projects

In this section, we give an overview of the architectural knowledge engineering
activities we conducted to create the Reusable Architectural Decision Model
(RADM) for SOA used in SOAI RA. We also define a four-step process and re-
lated guidance to syndicate architectural decision knowledge from such projects.

12.3.1 Sources of Architectural Decision Knowledge

The first source of input for the RADM for SOA was personal project experience
[25 26, 28]. As a second step, we factored in selected architectural knowledge from
projects technically led by peers, leveraging a company-wide SOA and Web ser-
vices practitioner community with more than 3500 members. We screened several
hundred architectural decisions from more than 30 projects from several geogra-
phies and industries. A third type of input was systematic literature screening, e.g.,
SOA and patterns books, technology introductions, and vendor documentation.

Originally, we had employed an ad hoc approach to incorporating these sources
of input. This ad hoc approach to asset harvesting turned out to be more labor in-
tense than originally anticipated: We were tempted to fix quality problems straight
away, adding our own expertise prematurely. This approach did not scale and did
not produce a satisfying model. Hence, we switched to a systematic approach. It
consists of a basic four-step knowledge harvesting process and related decision
modeling guidance.

12.3.2 Architectural Knowledge Harvesting Process

To overcome the limitations of our original ad hoc approach, we followed four
knowledge harvesting steps. Figure 6 illustrates these four steps, which we call
Review, Integrate, Harden, and Align (RIHA):

Review
Raw Input

Integrate
Into RADM

Harden
New Content

Align With
Other Content

Figure 6. Four-step knowledge harvesting process (RIHA)

These steps are characterized as follows:

1. In the review step, raw input from completed projects (decisions made)
is screened. This has the objective to assess the relevance and quality of
the input. ADIssue and ADAlternative instances for all decisions that are
decided to be included in the RADM are created (see below).

2. In the integrate step, existing information in the raw input is copied into
appropriate attributes defined in the SOAD metamodel (see below).

20 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

3. In the harden step, the issue is decomposed if necessary, e.g., if there is a
violation of the level structure because concepts, technology characteris-
tics, and product features are covered in a single ADIssue. Moreover, the
issue and alternative information is completed in this step, for example
with less obvious alternatives, missing pros and cons, additional decision
drivers, and additional decision dependencies. The contributing project
might have to be contacted to clarify certain aspects.

4. In the align step, the new model element is reviewed and edited for read-
ability and consistency with already existing parts of the model.

It is worth noting that it is possible to iterate and harvest knowledge incremen-
tally, although Figure 6 seems to suggest a linear process.

12.3.3 Guidance for the Four RIHA Process Steps

Review step. During the review step, two qualification criteria are applied to de-
cide whether an issue should be included in a RADM:

1. The first criterion is the reuse potential: Is a real architecture design prob-
lem described, does the raw input qualify as an architectural decision?
Does a candidate issue pertain to one of the principles and patterns defin-
ing SOA as an architectural style? Does it present real alternatives? Will it
recur, i.e., does it have sustainable, long lasting character or is it a tactical
or temporary decision? Does it avoid to reference proprietary features or
characteristics?

2. The second criterion is technical and editorial quality: Is the issue techni-
cally sound, particularly the justification for the chosen design? Did the
contributing project succeed? Does its description read well? Is established
terminology used, e.g., are the referenced design model elements defined
in the literature? Can issue and outcome be separated from each other?

A high reuse potential as indicated by the answers to the questions regarding
the first criterion is mandatory. If there are doubts about the technical quality of
the candidate issue, it is not used; the editorial quality can be improved with rea-
sonable editing effort if there is a strong need for the issue (e.g., high reuse poten-
tial). The contributing practitioner may be contacted in such a case to obtain addi-
tional information about the circumstances under which the decision was made.

Integrate, harden, and align steps. When integrating and hardening knowledge
that qualifies for inclusion in the RADM, the raw input is mapped to the SOAD
metamodel in the following way (transitioning from decisions made to decisions
required):

Table 1. ADM to RADM attribute mapping during asset harvesting

Knowledge
type

Raw input
from project

RADM for SOA
content

SOAD attributes and
further comments

Problem Outcome (often has an ADIssue Problem statement, back-

 12.3 Harvesting SOA Decision Knowledge from Projects 21

Knowledge
type

Raw input
from project

RADM for SOA
content

SOAD attributes and
further comments

embedded issue) ground references
Solution Chosen alternative ADAlternative Description, known uses
Rationale Justification ADIssue Recommendation
Rationale Justification ADIssue Decision drivers, pros and

cons of alternatives from
“because” sentence in justi-
fication

Requirements link Assumptions ADIssue Decision drivers
Dependencies Consequences, related

decisions
Related decisions Dependency types in [29];

often missing in raw input
Scoping Decision name, design

model references
ADIssue scope attribute

Method linkage Timestamp, decision
maker

ADIssue phase, role attributes

In [29], we define quality heuristics for architectural decision models, which
advise on the number of nesting levels and how to work with the logical and tem-
poral dependency relations defined in that paper. We now present several addi-
tional guidelines. All of these are suggestive rather than normative.

A meaningful name for the issue must be found. The patterns community ad-
vises us that finding good names is essential when creating a pattern language, but
also hard; the same holds for issue and alternative names. Names should be com-
pact, but expressive. They must be self-explaining, e.g., when appearing in a tool
that does not display any other attributes in a particular view. Names should be
generic so that they do not to have to be changed often, but also be expressive so
that they can serve as identifiers for issues and alternatives in the RADM. The en-
tire description of an issue and its alternatives should adopt the terminology estab-
lished by the principles and the patterns defining SOA as an architectural style.

All alternatives listed for an issue must solve the same problem. As a conse-
quence, all alternatives must reside on the same refinement level, e.g., conceptual
and technology alternatives are assigned to different (but related) issues. The al-
ternatives of an issue should be disjoint and unambiguous to make solutions com-
parable and support code generation as an additional form of decision enforcement
in an MDD context [27]. They should catch all known mainstream solutions as
well as a few exceptional ones that have been applied in practice. If a solution is
known under several names (e.g., façade and wrapper pattern), the alias names
should be listed in the description attribute. By convention, the alternatives are or-
dered from common and recommended to exceptional; if present, fallback alterna-
tives such as CUSTOM CODING or OTHER LANGUAGE appear last. The same order-
ing scheme should be applied consistently for all issues. A “good enough”
approach is followed; it is not a primary goal to be complete. The accuracy of the
knowledge has higher priority than its quantity.

The information about decision drivers should use a consistent vocabulary. An
established NFR or quality attribute taxonomy should be used. It may originate
from enterprise architecture guidelines [17] or an industry standard such as [11].
The more homogeneous and consistent the vocabulary is, the simpler it becomes
to tailor the model and to use it during the decision making. For instance, consis-

22 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

tently named decision drivers can easily be searched for in the decision model, and
decision support systems and tradeoff analysis methods can be applied seamlessly
when resolving one or more of the issues in the decision model. Some examples of
valid decision drivers are:

• Functional and nonfunctional requirements, e.g., as described in other ar-
tifacts in a reference architecture.

• General quality attributes from software architecture and software engi-
neering literature and forces in pattern books.

• Decisions made earlier, for example prior to project initiation.
• Architectural principles that have been stated for an industry, the com-

pany, a line of business (domain), or the current project.
• Non-technical influence factors such as education needs, license cost,

available skills, and experience in the project team.

The recommendations attribute in the ADIssue class in the SOAD metamodel
should refer to the decision drivers. The same holds for the pros and cons informa-
tion in the ADAlternative class and, later on when capturing decisions, for the jus-
tification attribute in ADOutcome instances.

According to our experience, descriptions of issues and their alternatives should
not exceed 1000 to 1200 words or one to three HTML pages in a generated report.
Longer descriptions are difficult to display in a user-friendly way and time con-
suming to study. If more information is required, the issue should summarize the
problem and refer to a separate document via the background reading attribute.

Subjective information must be clearly separated from objective information.
The SOAD metamodel has been designed to facilitate this separation (e.g., objec-
tive decision drivers vs. subjective recommendation). The writing style and editing
quality must meet professional standards, e.g., be informative and accurate, but
also keep the reader interested. According to our experience, a suggestive tone has
higher chances to succeed than an authoritative one: The asset consumer should
have the impression that the RADM intends to help and provide orientation in a
complex problem and solution space, not to create additional, unnecessary efforts
or technical complexities.

Additional decision capturing advice is available in the documentation of Ar-
chitectural Decision Knowledge Wiki [20].

Next, we present user experience with SOAI RA and SOAD.

12.4 Consuming SOA Decision Knowledge

In this section, we discuss our own experience with the SOAD concepts and the
RADM for SOA content, as well as feedback from early adopters of SOAI RA.

 12.4 Consuming SOA Decision Knowledge 23

12.4.1 SOAD Usage during Creation of SOAI RA

Usage of SOAD within the SOAI RA project made evident that architectural deci-
sions recur: Another SOA reference architecture project had already compiled a
draft version of an architectural decisions artifact, which we received in January
2007. It captured 50 decisions. 42 of these decisions were already covered by our
RADM for SOA which at that time contained about 100 issues.

The model-driven approach of SOAD was seen to be superior to text template-
based decision capturing. From a tool perspective, filtered report generation was
an important feature (easing reviews and reference architecture customization).
Unlike previous reference architectures that only capture decisions made during
reference architecture development (outcomes), SOAD documents the decisions
required during adoption of the reference architecture (issues). This distinction
caused some misunderstandings because we had named the issue an “AD” ini-
tially; after the renaming, the separation of problem and solution was welcomed.

Depth, breadth, and technical quality of the RADM for SOA content were ac-
knowledged and appreciated by the reviewers. One early action point was to ex-
plain the level and layer structure in detail; consumers of the SOAI RA can not be
assumed to be familiar with these concepts (even if they are standard concepts in
MDD and software architecture). To do so, we authored supporting documentation
and added the topic group hierarchy to the architectural decision report generation
feature in the Architectural Decision Knowledge Wiki tool. To make the position
in the hierarchy clear in the issue name, we defined naming conventions.

Early users appreciated the knowledge captured in single issues and alterna-
tives, but struggled to stay orientated when being confronted with several hundred
issues, even when being supported by the scope, phase, and role attributes and the
decision topic hierarchy in the Architectural Decision Knowledge Wiki tool. As a
second step after having added the attributes, we provided additional search, filter,
and export capabilities for ease of orientation and consumption. Finally, we added
concepts such as entry points and decision status management based on the mod-
eled decision dependencies. These concepts are explained in detail in [29].

12.4.2 User Experience with SOAD and SOAI RA

SOAD has been used on ten industrial SOA projects so far. Architects reviewed
up to 200 out of 389 issue descriptions and reused up to 50 issues during their de-
cision making on projects. Acceleration of the design activities and quality im-
provements were reported on these cases; all practitioners welcomed vision and
approach of SOAD. Architectural Decision Knowledge Wiki was downloaded
from IBM alphaWorks more than 600 times (the download is free of charge; regis-
tration is required); more than 200 users are registered in an IBM internal hosted
instance. The RADM for SOA was transferred to four IBM lines of business.

Experience with SOAD concepts (metamodel). The fundamental hypothesis that
architectural decisions recur if the same architectural style is employed on multi-

24 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

ple projects in an application genre was confirmed numerous times. We interacted
with several hundred architects. Only one of them disagreed, which turned out to
be a misunderstanding: We do not claim and require that the decision outcome al-
ways is the same; only the issue, expressing the need for a decision and the related
background information has to recur to make SOAD work.

The attributes in the SOAD metamodel were rated well. They were seen to be
understandable intuitively, conveying useful information, and giving enough in-
formation about the aspects of a decision that matter during decision making. A
few additional attributes were suggested, for instance the organizational reach of a
decision.

While the concept of refinement levels was acknowledged, the four levels in
the RADM for SOA were not seen to be the only solution. Other model organiza-
tion schemes such as architectural viewpoints and panes as defined by The Open
Group Architecture Framework (TOGAF) [17] were suggested. Decision depend-
ency management was seen as important differentiator of SOAD.

Experience with SOAD content (RADM for SOA). Model scoping and the level
of detail on which individual decisions are represented in the RADM for SOA
were appreciated and seen as appropriate (i.e., issues modeled that are not obvious
or trivial, captured knowledge relevant on SOA industry projects and documented
in an understandable way). Acceleration of decision identification and improved
decision making quality were reported. In one case, the effort for the creation of a
SOA principles deliverable decreased from eight to five person days because thir-
teen out of fifteen required decisions were present in the RADM for SOA and
could be reused.

Some confusion regarding proactive vs. retrospective decision modeling oc-
curred; one user simply copied the issue descriptions and the recommendation at-
tribute in the RADM to outcome instances in his deliverable. This caused negative
feedback from a senior architect in a team-internal quality assurance review. We
can conclude that the writing style has a significant impact on the success of a
RADM. User expectations must be managed; SOAD is not designed to make ar-
chitectural thinking obsolete. Project-specific requirements and RADM content
must be matched.

A rollout to additional, non-SOA application domains such as archiving solu-
tions and systems management is planned.

Experience with tool (Architectural Decision Knowledge Wiki). The user feed-
back regarding the value of Architectural Decision Knowledge Wiki was en-
couraging: users appreciated that all knowledge required during architectural deci-
sion making can be conveniently located in a single place and that the system
comes with a set of initial content (i.e., samples and decision modeling guidance).
The realized use cases were seen to be meeting practitioner wants and needs. The
presentation of ADIssues, ADAlternatives, and ADOutcomes on a single HTML
page received positive reactions. However, users reported that they found it rather
difficult to orient themselves and navigate in large models. In early versions, the
static topic group hierarchy was the only order defined; the decision dependency

 12.5 Conclusions and Outlook 25

relations were not fully leveraged at that point. Additional visual elements were
requested, as well as a closer integration with other tools for architects.

12.5 Conclusions and Outlook

In this chapter, we presented SOA Infrastructure Reference Architecture (SOAI
RA) which is a reusable asset supporting SOA infrastructure design, a basic proc-
ess for harvesting architectural knowledge from industry projects, related decision
modeling guidance, and usage experience with the asset. SOAI RA is a primary
carrier of architectural knowledge in the middleware service product line of IBM
GTS; it implements the codification part of the hybrid knowledge management
strategy of GTS.

Many challenging NFRs and other forces have to be met in SOA infrastructure
design. They conflict with each other and keep on changing; many of them remain
tacit. In SOA design, architects are confronted with a broad decision tree. The
many conceptual, technology, and vendor asset level alternatives vary in their pros
and cons with respect to decision drivers such as functional requirements, cost,
and quality attributes. There are numerous dependencies between the decisions,
which lead to combinations that work and others that do not work. Many tradeoffs
must be made, which often requires investigating clusters of related decisions.
Moreover, priorities and assessments vary by role, e.g., application architect, inte-
gration architect, and infrastructure architect. It is hard to make generic recom-
mendations; a prototype project or studies are often required to resolve a particular
design issue. Reference architectures such as SOAI RA, the SOA infrastructure
reference architecture created and used by the middleware service product line in
IBM GTS, can assist practitioners when they tackle complex design issues.

According to our experience, providing a knowledge repository is not sufficient
to make a codification strategy for knowledge management successful, no matter
how good such tools and their content may be. The available knowledge has to
appear in the tools and practices used by practitioners in their daily work. Any
lookup step, even if supported by powerful search and filter technologies and noti-
fication and recommendation features, means additional efforts which practitio-
ners are often not willing or not able to invest. Further tooling innovations are re-
quired to overcome this inhibitor for a successful use of architectural knowledge.

We envision several advanced usage scenarios for the concepts presented in
this chapter. Project managers can use architectural decision models for planning
purposes. Work breakdown structures and effort estimation reports can be created,
as open decisions correspond to required activities. Health checking is another ap-
plication area: If there are many, frequent changes, or many questions are still un-
resolved in late project phases, the project is likely to be troubled. Product selec-
tion decisions define which software licenses are required, and on which hardware
nodes the required software has to be installed. Moreover, the outcome of product-
specific asset configuration decisions can serve as input to software configuration
management. The decision model can also serve enterprise architects; they can

26 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

maintain a company-specific instance of the decision model, consisting of a subset
of issues and alternatives accompanied by company-specific recommendations.
Such an approach authorizes solution architects on projects to make decisions
(“freedom of choice”) without sacrificing architectural integrity (“freedom from
choice”).

12.6 References

1. Arsanjani, A., Service-oriented Modeling and Architecture, IBM
developerWorks, 2004.

2. Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.,
Pattern-Oriented Software Architecture – a System of Patterns. Wiley,
1996.

3. Chowdhury F, Practice of Team Based Management, 2008.
http://www.bdresearchers.org/Article/PracticeofTeamBasedManagement

4. Cook D., Cripps P., Spaas P., An Introduction to the IBM Views and
Viewpoints Framework for IT Systems, IBM developerWorks, 2007

5. Fowler M., Patterns of Enterprise Application Architecture, Addison
Wesley, 2003.

6. Gongla P., Rizzuto C.R., Evolving Communities of Practice: IBM
Global Services Experience, IBM Systems Journal, Volume 40, Number
4, 2001. Pages 842-862.

7. Hohpe G., Woolf, B., Enterprise Integration Patterns, Addison Wesley,
2004.

8. Hofmeister C., Kruchten P., Nord, Obbink J. H., Ran A., America P., A
General Model of Software Architecture Design Derived from Five
Industrial Approaches. Journal of Systems and Software 80(1), Elsevier,
2007. Pages 106-126.

9. IBM Global Technology Services,
http://www.ibm.com/services/us/index.wss

10. IBM Software Group, product overview, http://www.ibm.com/software

11. International Standards Organization (ISO), ISO/IEC 9126-1:2001, Soft-
ware Quality Attributes, Software engineering – Product quality, Part 1:
Quality model, 2001

12. Krafzig D., Banke K., Slama D., Enterprise SOA, Prentice Hall, 2005.

13. Kruchten P., The 4+1 View Model of Architecture, IEEE Software,
Volume 12, Number 6, November 1995. Pages 42-50.

 12.6 References 27

14. Kruchten P., Lago P., van Vliet H., Building up and Reasoning about
Architectural Knowledge. Proceedings of QoSA 2006, LNCS 4214,
Springer 2006. Pages 43-58.

15. Object Management Group, Reusable Asset Specification, Version 2.2,
November 2005.

16. Object Management Group, Software & Systems Process Engineering,
Metamodel Specification (SPEM), Version 2.0, April 2008.

17. Open Group, The Open Group Architecture Framework, Version 8.1.1,
http://www.opengroup.org/togaf

18. Plachy, E. C., Hausler P. A., Enterprise Solutions Structure, IBM
Systems Journal Special Edition, 1999.
http://www.research.ibm.com/journal/sj38-1.html

19. Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language
Reference Manual. Addison-Wesley, 1999

20. Schuster N., Zimmermann O., Architectural Decision Knowledge Wiki.
Available online: http://www.alphaworks.ibm.com/tech/adkwik

21. Schuster N., Zimmermann O., Pautasso C., ADkwik : Web 2.0
Collaboration System for Architectural Decision Engineering.
Proceedings of the Nineteenth International Conference on Software
Engineering & Knowledge Engineering (SEKE 2007), Knowledge
Systems Institute Graduate School, 2007. Pages 255-260.

22. Tai S., Software Service Engineering, Schloss Dagstuhl, 2009.
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=09021

23. Wahler M., Using Patterns to Develop Consistent Design Constraints.
PhD thesis, Swiss Federal Institute of Technology Zurich, 2008.

24. Youngs R., Redmond-Pyle D., Spaas P., and Kahan E., A Standard for
Architecture Description, IBM Systems Journal, Volume 38, Number 1,
1999. Pages 32-50.

25. Zimmermann O., OOPSLA tutorial “Building SOAs with Web
services”, available from http://soadecisions.org/soad.htm

26. Zimmermann O., Doubrovski V., Grundler J., Hogg K., Service-
Oriented Architecture and Business Process Management in an Order
Management Scenario: Rationale, Concepts, Lessons Learned.
Companion to the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA '05). ACM, 2005. Pages 301-312.

27. Zimmermann O., Gschwind T., Küster J., Leymann F., Schuster N.,
Reusable Architectural Decision Models for Enterprise Application

28 12 Industrial Case Study: Architectural Knowledge in an SOA Infrastructure
Reference Architecture

Development. Proceedings of QoSA 2007, LNCS 4880/2008, Springer,
2008. Pages 157-166.

28. Zimmermann O., Milinski S., Craes S., Oellermann F., Second
Generation Web Services-Oriented Architecture in Production in the
Finance Industry, Companion to the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA '04). ACM, 2004. Pages 283-289.

29. Zimmermann, O., Koehler J., Leymann F., Polley R., Schuster N.,
Managing Architectural Decision Models with Dependency Relations,
Integrity Constraints, and Production Rules. Accepted for JSS special
edition on architectural decisions, Elsevier, 2009.

