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Abstract. Software architects consider capturing and sharing architectural 
decisions increasingly important; many tacit dependencies exist in this 
architectural knowledge. Architectural decision modeling makes these 
dependencies explicit and serves as a foundation for knowledge management 
tools. In practice, however, text templates and informal rich pictures rather than 
models are used to capture the knowledge; a formal definition of model entities 
and their relations is missing in the current state of the art. In this paper, we 
propose such a formal definition of architectural decision models as directed 
acyclic graphs with several types of nodes and edges. In our models, 
architectural decision topic groups, issues, alternatives, and outcomes form 
trees of nodes connected by edges expressing containment and refinement, 
decomposition, and triggers dependencies, as well as logical relations such as 
(in)compatibility of alternatives. The formalization can be used to verify 
integrity constraints and to organize the decision making process; production 
rules and dependency patterns can be defined. A reusable architectural decision 
model supporting service-oriented architecture design demonstrates how we use 
these concepts. We also present tool support and give a quantitative evaluation. 
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1 Introduction 

Having been neglected both in academia and industry for a long time, the importance 
of architectural decision capturing and sharing is now widely acknowledged 
 [4] [12] [21]. However, existing work focuses on capturing and visualizing decisions 
that have been made already. In practice, text templates and informal rich pictures are 
used to capture this knowledge. Little emphasis is spent on specifying the 
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dependencies between decisions and on sharing information about architectural 
decisions required and alternatives available. Lack of decision capturing rigor is a 
possible source of quality problems with the software architectures under 
construction; insufficient incentives, methods, and tools for decision sharing inhibit 
active reuse of knowledge and exchange between practitioners on different projects.    

Existing decision capturing and sharing models and tools lack a formalization of 
decisions and their dependencies. Extending our existing Unified Modeling Language 
(UML) domain metamodel  [26], we apply set and graph theory concepts in this paper:  
We formally define architectural decision issues, alternatives, and outcomes and 
several types of containment and dependency relations such as decomposition, 
refinement, triggers, forces, and (in)compatibility. We use these logical and temporal 
relations to structure the decision models and to organize the decision making. 

Such formalization of the data structures in an architectural decision model is 
useful for several other purposes. It allows knowledge engineers to measure the 
quality of a reusable decision model developed in a practitioner community. Software 
architects can evaluate the models they create on individual projects; a decision order 
makes it possible to navigate through models and to compare them. Graph traversal 
algorithms can be developed, e.g., calculating path lengths in support of model 
maintenance. Dependency patterns can also be defined, which helps to detect the 
incompleteness or inconsistency of a decision model. Finally, knowledge engineers 
working in other decision capturing domains, e.g., not SOA, or not even software 
architecture, can reuse the model structure to organize their knowledge.  

The remainder of this paper is structured in the following way. Section 2 discusses 
related work and examples from Service-Oriented Architecture (SOA) design. Section 
3 introduces our UML domain metamodel and types of decisions we observed to 
recur in enterprise application development and SOA design. Section 4 presents the 
formalization of architectural decision models. Section 5 introduces decision 
dependency patterns. Section 6 discusses how we implemented and validated our 
concepts. Section 7 concludes with a summary and an outlook to future work. 

2 Related Work 

Bass et al. mention the term architectural decision, but not fully define it in “Software 
Architecture in Practice”  [3]. Kruchten et al.  [12] define an ontology that describes 
the attributes that should be captured for a decision, the types of decisions (e.g., 
executive, existence, and property decisions), when and how decisions are made (i.e., 
their lifecycle), and several types of decision dependencies. They also focus on the 
visualization of the decisions and identify many use cases for decision knowledge. 
Their ontology is semantically rich and defines the knowledge domain both broadly 
and deeply. However, it is described informally only (i.e., in text). Moreover, design 
problem and solution are treated as one entity (i.e., alternatives are a dependency type, 
not an entity). Hence, decisions required (which we refer to as issues) and decisions 
made (which we refer to as outcomes) can not be separated easily, which limits the 
reusability of the modeled knowledge. Finally, there are no concepts for structuring 
decision models apart from the decision types mentioned above. 
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Jansen and Bosch  [5] view software architecture as a composition of a set of design 
decisions. They make the case for decisions to be a first class architecture design 
concept. Their model for architectural design decisions focuses on change over time 
as a dominating force driving the decision making. In their metamodel, they 
distinguish design problems and solutions to them, and outline the attributes that are 
required to capture related knowledge. Design fragments make it possible to integrate 
decision models with models for other viewpoints (e.g., logical components and 
connectors). The metamodel is introduced in text and figures; dependencies between 
different problems or different solutions remain implicit (i.e., decisions depend on 
each other if they deal with the same or with related design fragments). There is no 
overarching model structuring scheme. The reuse of architectural decision knowledge 
is only touched upon: Design patterns are mentioned as a source of reusable solutions. 

Several decision capturing templates exist in industry and academia, which can 
also be viewed as informally specified metamodels. For instance, the IBM Unified 
Method Framework (UMF) defines such template in its “architectural decisions” 
artifact. Architects’ Workbench (AWB)  [1] provides modeling tool support for this 
and many other UMF artifacts: The “Group ADs by Topic” viewpoint in AWB 
introduces a topic hierarchy and defines an outcome attribute in the decision entity; 
alternatives are modeled as a separate entity. UMF was formerly known as IBM 
Global Services Method and has been in use on professional services engagements for 
IBM clients since 1998. One of the IBM reference architectures comes with a filled 
out architectural decisions artifact, which contains architectural decisions made 
during Web application design. Having worked with this artifact, Tyree and Akerman 
 [21] defined another rich decision capturing template, structured into 13 sections. 
Later on, they proposed an entire ontology to support the design of software 
architectures  [2].  

SEURAT, PAKME, ADDSS, The Knowledge Architect, AREL, and Archium are 
additional tools providing decision modeling capabilities and supporting metamodels. 
Subsets of these tools are compared in  [4] and  [5]. 

In the patterns community, several schools of thought and many pattern templates 
exist, which can also be used to capture architectural decisions  [8]. Requirements in 
areas such as performance and extensibility typically are referenced in textual intent 
or forces sections. Many pattern languages remain on an abstract, conceptual level; 
others specialize on a single problem or technology domain such as enterprise appli-
cation architecture  [6] or process-driven SOA  [23]. Patterns for process-driven SOA 
describe how to automate the management of long-running business processes such as 
loan approval processing or order management along supply chains (problem domain) 
with workflow engines and integration middleware (technology domain). The activity 
flow in such processes can be specified using Business Process Modeling (BPM) 
tools and implemented as a network of communicating Web service consumers and 
providers  [24]. In our earlier work, we demonstrated that the relationship between 
patterns languages and architectural decision models is synergetic: We position 
architectural patterns as conceptual architecture alternatives in our reusable 
architectural decision models  [26] [28], which capture decisions required and possible 
solutions. The pattern texts serve as source of architectural decision knowledge.  

Defining templates or metamodels and referencing patterns is a good starting point 
towards more systematic and rigorous decision capturing; however, it does not 
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remove real-world inhibitors for sustainable and maintainable decision sharing such 
as no immediate benefits, budget and scheduling problems, and lack of tools. Tang et 
al. report these and several more inhibitors in  [20]. To address these issues, we 
formalize the concepts in existing metamodels and templates and extend them with 
support for reuse and collaboration: If a comprehensive architectural decision model 
is created for a certain domain, which can be tailored for particular project at project 
initiation time, the benefits reported in the literature can be realized by a community 
of architects over a longer period of time. The budget and tools issues are then faced 
by an organizational unit (e.g., architecture management group in an enterprise or a 
community of practice in a professional services firm) rather than by individuals or by 
project teams. Hence, there are better chances for overcoming them. For instance, a 
knowledge engineer can be tasked with the creation of a reusable architectural 
decision model, which is then used by architects on multiple projects.  

In the next section, we introduce such reusable architectural decision model and an 
underlying metamodel. In Section 6, this decision model is presented in more detail. 

3 A Domain Metamodel for Capturing Architectural Decisions 

A domain metamodel for architectural decision capturing must be expressive enough 
to support the use cases from  [12]. In our reuse and collaboration context, additional 
use cases are education, knowledge exchange, design method support, review 
technique, and governance instrument. The metamodel should only define a small set 
of mandatory attributes so that practitioners are not overwhelmed with information 
when populating and studying decision models. The metamodel must be machine 
readable and translatable into other specifications, e.g., into Web services contracts 
and relational database schemas, so that tool support for decision modeling and 
dependency management can be built.  

In our earlier work, we derived such a metamodel from earlier proposals  [1] 
 [5] [21] and our practical industry experience  [24] [27], and defined three processing 
steps, decision identification, decision making, and decision enforcement  [26]. Figure 
1 shows  an updated version of that model. It uses Unified Modeling Language 
(UML) classes to introduce the three core entities ADIssue, ADAlternative, and 
ADOutcome; ADTopicGroup and ADLevel are supplemental structuring concepts.1  

An ADIssue instance informs the architect that a single architecture design 
problem has to be solved. ADAlternative instances then present possible solutions to 
this problem. Finally, ADOutcome instances record an actual decision made to solve 
the problem including its rationale. ADTopicGroup instances bundle related issues.  

We distinguish decisions made and decisions required to facilitate reuse: ADIssue 
and ADAlternative provide reusable background information about decisions required 
to the architect: The problemStatement characterizes an ADIssue on an introductory 
level, while backgroundReading and knownUses (ADAlternative) point to further in-
formation. The decisionDrivers attribute states types of non-functional requirements, 
including software quality attributes and environmental issues such as budget and 
skill availability; the patterns community uses the term forces synonymously. The 

                                                           
1 In our previous work, the ADIssue was called AD; ADTopicGroup was called ADTopic. 
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role and phase attribute serve as link to general-purpose methodologies such as the 
Rational Unified Process (RUP)  [11].  

 
Fig. 1. UML metamodel for architectural decision capturing and reuse. 

ADOutcome instances capture project-specific knowledge about decisions made. 
The justification information refers to actual requirements (“sub-second response time 
in customer interface”), as opposed to the ADIssue-level decision drivers which only 
list types of requirements (“performance, i.e., response time and throughput”). These 
two knowledge aspects have different reuse characteristics: Naturally, the ADIssue 
and ADAlternative information about decisions required and available solutions has 
more reuse potential then the project-specific rationale. A second reason for factoring 
out ADOutcome as a separate entity is that the same ADIssue might pertain to many 
elements in a design model, e.g., business processes and Web service operations in 
SOA. Therefore, types of design model elements are referenced via the scope attribute 
in the ADIssue. ADOutcome instances then can be created dynamically on projects, 
and can refer to design model element instances via their name.  

To give an example, a business process model for order management might state 
that three “customer enquiry”, “claim check”, and “risk assessment” business 
processes have to be implemented in an insurance industry case.2 One ADIssue is to 
select an INTEGRATION TECHNOLOGY3 to let the activities in each of the three business 
processes interact with other systems, with ADAlternatives such as WEB SERVICES 
and RESTFUL INTEGRATION  [15]. Problem statement (“Which technology should be 
used to let the activities in a business process communicate with Web services and 
legacy systems?”) and decision drivers (“interoperability”, “reliability”, and “tool 
support”) are the same for all three business processes. Hence, it is sufficient to create 

                                                           
2 See  [24] for an order management SOA case study from the telecommunications industry. 
3 In all further examples, we set ADIssues and ADAlternatives in THIS FONT (small caps). 
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a single ADIssue instance which has a “business process” scope. This value of the 
scope attribute refers to a type of SOA-specific design model element.  

Decision outcome information such as the chosen alternative and its justification 
depends on the individual requirements of each process, e.g., “for customer enquiry, 
we decide for WEB SERVICES as a Java and a C# components have to be integrated in 
an interoperable manner and Web services tool support exists for these languages” 
and “for risk assessment, we select RESTFUL INTEGRATION because not all of the 
involved backend systems support XML and SOAP processing”. Hence, three 
ADOutcome instances are created and associated with the same ADIssue. These 
instances capture the process-specific decision and its rationale. They refer to the 
actual business processes in their name attributes (“customer enquiry”, “claim check”, 
and “risk assessment”).  

Closely related ADIssues are grouped into ADTopicGroups, which form a 
hierarchy. This hierarchy serves as a table of content: Each ADTopicGroup hierarchy 
is assigned to one of several ADLevels of refinement, e.g., conceptual level, technolo-
gy level, or vendor asset level. The resulting structure makes issues easy to locate. 

Decision dependencies are explicitly modeled as UML associations between 
ADIssues. We defined a single dependsOn association in Figure 1; in Section 4, we 
introduce additional dependency types that correspond to those defined in  [12]. 

Rationale. Our metamodel extends that from  [1] and  [5], e.g., with the levels concept. 
Jansen and Bosch also separate problem (issue) from solution (alternative), and define 
how to scope decisions via design fragments. Similar entities and concepts for method 
alignment can be found in the core model defined by de Boer et al.  [4], which was 
developed independently of and simultaneously to our UML model. Unlike de Boer et 
al., we also define attributes, which is required to support reuse and collaboration. In 
particular, we define attributes that are required for lifecycle management of 
ADIssues in the reusable part (e.g., role) and ADOutcomes in project-specific 
decision models (e.g., changedBy). 

The level structure is motivated by our observation that when designing enterprise 
applications, the technical discussions often circle around detailed features of certain 
vendor products, or the pros and cons of specific technologies, whereas many highly 
important strategic decisions and general concerns are underemphasized. These 
discussions are related, but should not be merged into one; they reside on different 
refinement levels. Separating design concerns in such a way is good practice; Fowler 
 [6] and RUP with its elaboration points recommend a similar incremental approach 
for UML class diagrams used as design models. We adopted this recommendation for 
decision models. It is possible to select other ADTopicGroup hierarchies. For 
instance, panes in enterprise architecture frameworks and logical viewpoints can also 
be used as structuring mechanisms. 

Example. A Reusable Architectural Decision Model (RADM) for SOA serves as a 
running example throughout this paper. It was created in an industrial decision har-
vesting project that started in January 2006 (see Section 6 for more information). All 
389 decisions captured so far conform to the metamodel shown in Figure 1. 

Table 1 shows several ADIssue examples from the RADM for SOA and assigns 
them to seven decision types. We found many instances of these seven decision types 
during the creation of the RADM for SOA (see Section 6 and  [26] for rationale): 
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Table 1.  Decision types and SOA examples (RADM for SOA) 

Decision type  ADLevel ADTopicGroups and ADISSUES (in SMALL CAPS) 
Executive decisions, 
requirements 
analysis decisions 

Executive level  Out of scope of this paper, introduced in  [26] and 
elaborated upon in  [28]. 

Pattern Selection 
Decisions (PSDs) 

Conceptual level
 
 

 

ADTopicGroup “Service Layer Realization Decisions”: 
IN MESSAGE GRANULARITY 
MESSAGE EXCHANGE PATTERN 
INVOCATION TRANSACTIONALITY PATTERN 

ADTopicGroup “Process Layer Realization Decisions”: 
SERVICE COMPOSITION PARADIGM 

ADTopicGroup “Integration Layer Realization Decisions”: 
INTEGRATION STYLE 
BROKER, ADAPTER, REGISTRY PATTERN USAGE 

Pattern Adoption 
Decisions  (PADs) 
 

Conceptual level 
 

 

Process Layer Realization Decisions: 
MACROFLOW MICROFLOW  
PROCESS ACTIVITY TRANSACTIONALITY (PAT) 

Integration Layer Realization Decisions: 
COMMUNICATIONS TRANSACTIONALITY (CT) 
REGISTRY LOOKUP TIME 

Technology 
Selection Decisions 
(TSDs) 

Technology level ADTopicGroup “Service Layer Technology Decisions”: 
TRANSPORT PROTOCOL CHOICE 
MESSAGE EXCHANGE FORMAT 

ADTopicGroup “Process Layer Technology Decisions”: 
SERVICE COMPOSITION LANGUAGE 

ADTopicGroup “Integration Layer Technology Decisions”: 
INTEGRATION TECHNOLOGY 
AUTHORIZATION TECHNOLOGY 

Technology 
Profiling Decisions 
(TPDs) 

Technology level 
 

Service Layer Technology Decisions: 
SOAP COMMUNICATION STYLE 
WEB SERVICES TRANSACTIONALITY 

Process Layer Technology Decisions: 
BPEL VERSION 
COMPENSATION TECHNOLOGY 

Integration Layer Technology Decisions: 
TRANSPORT QOS 
XML SCHEMA CONSTRUCTS 

Vendor Asset 
Selection Decisions 
(ASDs) 

Vendor asset 
level  
 

ADTopicGroup “Service Layer Asset Decisions”: 
SOAP ENGINE 

ADTopicGroup “Process Layer Asset Decisions”: 
BPEL ENGINE 
SCA IMPLEMENTATION 

ADTopicGroup “Integration Layer Asset Decisions”:  
ESB GATEWAY 

Vendor Asset 
Configuration 
Decisions (ACDs) 

Vendor asset 
level 
 

Service Layer Asset Decisions: 
IBM SOAP ENGINE DEPLOYMENT MODE 
AXIS2 SOAP ENGINE DEPLOYMENT MODE 

Process Layer Asset Decisions: 
(WPS BPEL) INVOKE ACTIVITY TRANSACTIONALITY 
SCA QUALIFIERS 

Integration Layer Asset Decisions: 
ESB TOPOLOGY 
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In addition to the three levels already introduced, we use an executive level in the 
RADM for SOA, which comprises executive decisions as defined in the taxonomy 
from Kruchten et al.  [12].  

Pattern Selection Decisions (PSDs) are concerned with choosing certain 
architectural patterns from the vast body of patterns available in the literature. Pattern 
Adoption Decisions (PADs) also deal with architecture and design patterns, but in a 
more detailed way, e.g., selecting certain pattern variants and pattern primitives once 
a PSD has been made. Such PADs often can be found in the pattern texts, e.g., in 
bulleted lists, cheat sheets and overview diagrams in patterns books. Pattern language 
primitives and grammars as defined by Zdun et al.  [23] are another source of PADs. 

Technology Selection Decisions (TSDs) select certain technologies that implement 
the selected and adopted patterns; Technology Profiling Decisions (TPDs) follow 
them, specifying implementation details such as subsets of technology standards to be 
employed. An example TPD is the decision about the XML SCHEMA CONSTRUCTS 
that are selected from the many options in the XML schema standard to serve as 
request and response message parameters defined for service operations. 

Asset Selection Decisions (ASDs) pick commercial products or open source assets 
supporting the selected and profiled technologies; Asset Configuration Decisions 
(ACDs) then cover installation and customization details of these products.  

Let us give another, more advanced example. When implementing the three 
business processes for order management introduced above, a conceptual PSD for a 
SERVICE COMPOSITION PARADIGM is required, deciding whether the processes should 
be made executable in a workflow engine, or be realized in traditional programming 
language code. If a workflow engine is decided for, a related TSD is to agree on a 
SERVICE COMPOSITION LANGUAGE such as Business Process Execution Language 
(BPEL). Another related issue is to select a BPEL ENGINE as an ASD, e.g., Active 
BPEL, IBM WebSphere Process Server or Oracle BPEL Process Manager. For each 
of the activities in a business process and for each invoked Web service, the 
INVOCATION TRANSACTIONALITY PATTERN and INTEGRATION STYLE have to be 
decided. These issues have several related PADs, TPDs, and ACDs. This fairly 
complex set of issues will serve as our example later in this paper.  

While the content in this particular RADM is specific to enterprise application 
development and SOA, the concepts presented in the next section provide generic 
solutions to the decision capturing and sharing problems outlined in Sections 1 and 2. 

4 A Formal Model for Decision Modeling with Reuse 

Existing decision capturing approaches are based on text templates or informally 
specified metamodels. Their main usage scenario, architecture documentation, has a 
retrospective nature (even if the captured knowledge is shared later). In such a setting, 
each decision is captured from scratch and ad hoc as it is made during design. In some 
approaches, it is mined from other artifacts. On the contrary, our approach emphasizes 
the proactive sharing of reusable background information about recurring design 
issues, captured in ADIssue and ADAlternative instances. Such reusable decision 
model can steer software architects through the decision making, informing them 
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about decisions required and highlighting the problems to be solved. For recurring 
ADIssues, only the ADOutcome instances have to be created on the project.  

To be able to use a reusable decision model in such active guiding role, additional 
concepts are required. For instance, a structure must be defined that organizes large 
models and makes them consumable; a decision making order must be specified. To 
do so, we complement the UML model from Section 3 with formal definitions now. 
The rationale behind and motivating examples for each concept come from the SOA 
domain; however, it is an explicit design goal for our modeling concepts that the 
concepts can also be applied to other architectural domains. 

4.1 Elementary Definitions for Architectural Decision Modeling 

Basic concepts from set and graph theory are adequate to define the entities in the 
UML model and the relations between them. We begin with representations for the 
UML classes ADTopicGroup, ADIssue, and ADAlternative from Figure 1. 

Definition 1 (Architectural Decision Topic Groups T) Let T be a set of 
architectural decision topic groups T = {(n, s, d) x n, s, d c Strings} where the tuple 
(n, s, d) represents the name, short name, and description of an architectural decision 
topic group.4 

Rationale and example: An architectural decision topic group (short: topic group) 
represents closely related design concerns. For instance, in the  RADM for SOA, one 
topic group per architectural layer is defined on each refinement level (Table 1 in 
Section 3). An example is the ADTopicGroup “Service Layer Realization Decisions”.  

It is worth noting that our topic groups are different from the topics in  [4]. They do 
not represent individual design issues, but group such issues. Representing individual 
design issues is the purpose of the next entity: 
 
Definition 2 (Architectural Decision Issues I) Let I be a set of architectural decision 
issues I = {(n,s,p,r, {tt}) x n, s, p, r, tt  c  Strings} where n is a name, s a scope, p a 
project phase, r a role attribute, and {tt} a set of topic tag strings. 

Rationale and example: An architectural decision issue (short: issue) represents a 
single design concern. Name, scope, phase, role are describing texts. The name is 
used to identify and list issues. The topic tags index the model content. They can be 
used to locate issues by subject area keyword. In the RADM for SOA outlined in 
Section 3, we use the names of the decision types from Table 1 as topic tags, as well 
as important non-functional concerns such as security and transaction management. 
Hence, the architect can query the model for all PSDs (as introduced in Section 3), all 
issues dealing with security and/or transaction management, etc.  

In our SOA decision model, two PSDs deal with the MESSAGE EXCHANGE 
PATTERN (dealing with the abstract protocol syntax and synchrony of service 
invocations)  [9] and the INVOCATION TRANSACTIONALITY PATTERN (dealing with 
system transactions as an approach to protecting shared resources from invalid 

                                                           
4 The other attributes from the UML model are irrelevant for the formalization. 
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concurrent access, e.g., lost updates and phantom reads   [6]). Another issue is the IN 
MESSAGE GRANULARITY PSD, which concerns the syntax (breadth and depth) of the 
in message parameters. These issues are listed in Table 1 in Section 3. 

An architectural decision issue captures a single design concern or problem 
without modeling possible solutions to it. Architectural decision alternatives do so: 

 
Definition 3 (Architectural Decision Alternatives A) Let A be a set of architectural 
decision alternatives A = {(n, d) x n, d c Strings} where n is a name and d is a 
solution description.  

Rationale and example: An architectural decision alternative (short: alternative) 
presents a single solution to the design problem expressed by an ADIssue. For 
instance, the MESSAGE EXCHANGE PATTERN can decide between synchronous 
REQUEST REPLY and asynchronous ONE WAY message exchange. Two alternatives for 
the INVOCATION TRANSACTIONALITY PATTERN might be TRANSACTION ISLANDS (do 
not let service consumer and provider share a single transaction context) and 
TRANSACTION BRIDGE (propagate transaction context with a service invocation)  [24]. 

 
Definition 4 (contains relations \T, \I, \A, \) Let \T  ` T × T be a contains relation 
defined between topic groups, \I  ` T × I be a contains relation defined between topic 
groups and issues, and \A  `  I × A be a contains relation defined between issues and 
alternatives. Subsequently, we only speak of the contains relation \ = \T  4 \I 4 \A. If 
(a \ b), we also say that a contains b and b is contained in a. 

Rationale and example: The contains relation \ allows us to define a single 
hierarchical structure, which serves as a table of content, allowing the architect to 
locate issues and alternatives easily in the reusable architectural knowledge and 
helping the knowledge engineer to avoid undesired redundancies. One or more 
alternatives solve a particular issue. Related issues can be put into one topic group. 
Related topic groups can be placed in the same parent topic group. Figure 2 illustrates 
the tree structure resulting from the \ relation: 

t2t2

i1i1

a1a1

a2a2

t1

t3t3

i3i3 a6a6i2i2

a3a3

a5a5

t4t4

a4a4

topic
group

issueissue

alt.alt.

 
Fig. 2. General organization of an architectural decision tree, indices reflect an ordering of the 

topic groups, issues and alternatives. 

In the UML metamodel in Figure 1, the \ relation is represented by the three 
associations (arrows with filled with solid diamonds at originating end) that express 
physical containment between ADTopicGroups, ADIssues and ADAlternatives, 
respectively. 
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We define only a single tree structure (i.e., no overlays), and one alternative can 
only be a solution to one design issue. This modeling decision is justified by our 
emphasis on reuse: In reusable architectural decision models, knowledge engineers 
describe the attributes of the alternatives relative to the problem statement and the 
decision drivers of an issue, which makes it necessary to define a 1:n relation (also 
see UML model in Section 3). If a pattern, technology, or asset solves multiple 
problems, it is referenced in multiple alternatives. We faced a tradeoff between 
normalization (i.e., no redundancy) and precision (accuracy) when making this 
modeling decision; we consider the latter requirement to be more important in our 
usage context. 

Definition 5 (Architectural Decision Tree ) Using T, I, A, and the \ relation, we 
can define an architectural decision tree  = (T  4  I 4 A,\) with a single root node t0 
c T called the root topic.5 In , a topic group contains zero or more other topic 
groups and issues, while an issue contains zero or more alternatives. In this tree, each 
topic group t c T except the root topic is contained in exactly one other topic group ti 
c T: 

≤  t, ti , tj c T: (ti \  t) . (tj \  t) u ti = tj 

Each issue i c I must be contained in exactly one topic group t c T: 

≤ i c I:  ≥ t c T (t \ i) 
≤ i c I, ti , tj c T: (ti \ i) . (tj \ i) u ti = tj 

Each alternative a c  A must be contained in exactly one issue i c  I:  

≤ a c A:  ≥ i c I (i \ a) 
≤  ii, ij c I, a c A: (ii \  a) . (ij \ a) u ii = ij 

Rationale and example: Modeling architectural decisions in itself is not new: Ran and 
Kuusela also propose (but do not formalize) the notation of Design Decision Trees 
(DDTs)  [16]. Our formalization allows us to define advanced concepts later. 

The topic group hierarchy may mimic the containment hierarchy of a design 
model, e.g., beginning with architectural layers. In our RADM for SOA, parts of the 
hierarchy resemble the containment hierarchy of a Web service definition. “Service” 
is one of the conceptual patterns that define SOA as architectural style and Web 
Services Description Language (WSDL)  [22] is one of several technology options to 
express service contracts; WSDL port types define service operations through in 
messages accepted and out messages returned. Both service pattern and WSDL 
technology have several issues attached (for examples, see Table 1). Consequently, 
“Service Layer Realization Decisions” is a topic group on the conceptual level, which 
has child topic groups such as “Operation Design” and “Message Design” (not shown 
in Table 1). Such containment relations between design model elements exist in many 
application genres and architectural styles. Architectural layering is a popular 
structuring principle  [6].  

                                                           
5 In graph theory, a directed graph is a pair G = (V, E) where V is a set of vertices (or nodes) 

and E is a subset of V × V relations (ordered pairs) called edges (arcs). A graph that does not 
contain any cycles is an acyclic graph. A directed acyclic graph is often called a DAG. A tree 
is a DAG with a single root node and a single path from any node to the root node. 
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Figure 3 instantiates the abstract tree structure from Figure 2 for parts of our SOA 
example: 
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Fig. 3. An instantiated example tree showing a subset of issues that must be resolved when 

adding Web services to an architecture.  

Definition 6 (Ordered Tree ) We define an ordering among the child nodes of 
identical type (topic group, issue, alternative) contained in a node in order to be able 
to enumerate sibling nodes of the same type sharing the same parent node, i.e., we 
introduce <T, <I, <A. 

Rationale and example: An ordering relation defines a recommended reading 
sequence, and can be used to express integrity constraints on architectural decision 
trees (which we will define later). In the simplest case, the <T, <I, and <A relations can 
be the alphanumeric sorting of the topic group, issue, and alternative names. Note that 
a topic group may contain other topic groups and issues. In this case, we order all 
topic group siblings before all issue siblings. This yields an ordered tree ; we refer to 
its total order relation as <.  

4.2 Multi-Level Architectural Decision Model and Logical Relations 

The meta model from Section 3 and the elementary definitions from Section 4.1 allow 
knowledge engineers to capture decisions and organize the knowledge in a topic 
group hierarchy. However, the resulting ordered architectural decision tree does not 
yet support the vision of an active, managed decision model taking a guiding role 
during architecture design. More relations between topic groups, issues, and 
alternatives must be defined.6 In this section, we introduce logical constraints; 
followed by temporal dependencies in Section 4.3. Again, we apply concepts from 
graph theory.  
 
Definition 7 (Architectural Decision Model , root topic, initial issue) An 
architectural decision model  is a partially ordered set of architectural decision 
trees 00,…, 10,…, km arranged in levels L0,…,Lk. Each tree belongs to exactly one 

                                                           
6 Note that the UML model in Section 3 only defined a generic “dependsOn” association. 
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level and each level must contain at least one tree, i.e., no empty levels exist. A tree ki 
is the i-th tree in level k. If k < l, we speak of tree ki having a higher level than tree 

lj and lj having a lower level than ki. Each architectural decision model  has 
exactly one distinguished root topic, which is the root topic of 00 in the highest level 
L0. Accordingly, the first issue in the distinguished root topic (according to <I) is 
identified as the initial issue.  

We also say that the issues in a tree reside on the level this tree belongs to. 
Rationale: Architectural decision models define the multi-level structure required for 
knowledge bases such as that outlined in Table 1 in Section 3. The partial order 
assigns topics and issues to different levels of abstraction and refinement. Figure 4 
illustrates the concepts from Definition 7: 

t1t1

i00 2 i00 2 

a1a1

a2a2

i00 3i00 3 a1a1

issueissue

alt.alt.
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t1t1
i10 1i10 1
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d

r

r
contains

i00 1i00 1

a1a1

a2a2

topic
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d

 
Fig. 4. A multi-level architectural decision model with four trees, root topic, and initial issue. 

Figure 4 already shows relations not defined yet: i00 1 decomposes into i00 2, and i00 

3, which in turn is refined by i10 1 and then i20 1. These relations formally capture how 
issues residing in different levels and trees of a model  can be combined in order to 
express that an abstract, conceptual design is elaborated upon on the same or on a 
lower, more concrete level of refinement: 
 
Definition 8 (influences, refinedBy, decomposesInto relations) 
Let  be an architecture decision model with levels L0,…,Lk and trees 00 ,…, km 
associated with levels L0,…,Lk. The following relations are defined between issues i00 
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0,…, ikm n c I where an issue ikm n is the n-th issue in the m-th tree Tkm contained within 
level Lk of a model . 

• influences(ijl n, ikm o) with j, k, l, m, n, o arbitrary. The influences relation 
captures cross-cutting concerns between issues. It adds additional 
undirected edges to the model that do not necessarily have to form a 
connected graph. The relation is symmetric, i.e., if ii influences ij, then ij 

influences ii. In addition, the influences relation is not reflexive, but 
transitive. An issue can influence several other issues and it can also be 
influenced by several other issues. 

• refinedBy(ijl n, ikm o) with j < k and l, m, n, o arbitrary. The refinedBy 
relation links issues that have to be investigated at several levels. It adds 
additional directed edges to the model that must always lead from an 
issue in a higher level to an issue in a lower level of the model, i.e., no 
cycles can occur. The relation is transitive, but not reflexive, and not 
symmetric. If k = j + 1, i.e., an issue refines an issue that resides on the 
subsequent level, we speak of a strict refinedBy relation. Issues in level L0 
cannot refine any other issue, while an issue in the lowest level Lk cannot 
be refined by any issue. If i1 refinedBy i2, i1 is referred to as having an 
outgoing refinement relation and i2 as having an incoming one. 

• decomposesInto(ijl n, ikm o) with j = k and l, m, n, o arbitrary. The 
decomposesInto relation expresses functional aggregation. It adds 
additional directed edges between issues within the same level. The 
relation is transitive, but neither reflexive nor symmetric. No cycles are 
permitted. 

If (i1 influences i2), we also say that i1 influences i2 and that i2 is influenced by i1; if 
(i1 refinedBy i2), we also say that i1 is refined by i2 and that i2 refines i1; if (i1 
decomposesInto i2), we also say that i1 decomposes into i2 and that i2 is a 
decomposition of i1. 

Table 2 summarizes the main properties of the relations. 

Table 2. Decision relations between architectural decision issues and their properties 

Relation Set(s) Reflexive/ 
symmetric/ 
transitive 

Cardinality  Other properties 

influences  I × I no/yes/yes n:m 
(no function) 

– 

refinedBy  I × I no/no/yes 0..1:0..1 
(function) 

Introduces one or more additional 
DAGs (i.e., no cycles permitted); 
only from higher to lower level 
(next lower if strict). 

decomposesInto 
 

I × I no/no/yes 0..1:n 
(no function) 

No cycles permitted. Only within 
same level. 

Rationale and examples: We compare these relations with those defined by Kruchten 
et al. in Section 6. SOA examples are given later in this section (Figure 5). 

The influences relation can be used to express cross-cutting concerns without 
making any assumptions about the level and order of the related decisions. For 
instance, the choice of a BPEL ENGINE also has to do with the AUTHORIZATION 
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TECHNOLOGY. However, the relation is not refinedBy because the two issues belong 
to the same refinement level. The relation is not decomposesInto either because the 
issues deal with different subject areas (workflow and security). The influences 
relation is often used in rapid decision capturing efforts and replaced by one of the 
more elaborate forms such as refinedBy and decomposesInto as the decision model 
matures during subsequent knowledge engineering iterations. 

The refinedBy relation allows us to model that the same issue typically has to be 
investigated at several stages of a software development process. A level can 
correspond to a Model-Driven Architecture (MDA) model type such as platform-
independent model and platform-specific model, or to a development milestone, e.g., 
an elaboration point defined in RUP. A conceptual pattern such as SERVICE 
COMPOSITION PARADIGM abstracts away from any particular technology. 
Consequently, a SERVICE COMPOSITION LANGUAGE like BPEL has to be selected in 
refinement of the conceptual decision to adopt the WORKFLOW pattern as the SERVICE 
COMPOSITION PARADIGM. A particular BPEL ENGINE vendor asset has to be selected 
if BPEL is the selected SERVICE COMPOSITION LANGUAGE. 

The decomposesInto relation expresses functional aggregation of issues. When 
following the separation of concerns principle, complex design problems are often 
broken down into to smaller, more manageable units of design work (often referred to 
as divide-and-conquer approach to problem solving). These units can then be 
investigated separately (but being aware of the dependency between them). 

With these relations introduced, we can define two logical constraints on 
architectural decision models . 

Integrity Constraint 1 The refinedBy and decomposesInto relations are mutually 
exclusive.  

≤ii, ij : ii refinedBy ij u ￢ (ii decomposesInto ij ) 

and ≤ii, ij : ii decomposesInto ij u ￢ (ii refinedBy ij) 

Rationale: This follows from our basic definitions, because the refinedBy relation is 
defined between issues residing on different levels, while the decomposesInto relation 
is only defined between issues residing on the same level. 

Integrity Constraint 2 If two issues have a refinedBy or a decomposesInto relation 
they cannot have an influences relation and vice versa. 

≤ii, ij : ii refinedBy ij - ii decomposesInto ij u ￢ (ii influences ij) 
≤ii, ij : ii influences ij u ￢ (ii refinedBy ij - ii decomposesInto ij) 

Rationale and example: This constraint avoids unnecessary redundancies in the 
model. Figure 5 adds the three levels we introduced in Section 3 to our running 
example, the design of transactional workflows in SOA. The topic group hierarchy is 
shown: three SOA layers, the service layer, the process layer, and the integration 
layer, are represented by separate topic groups. The PSD INVOCATION 
TRANSACTIONALITY PATTERN (ITP) is an example for the decomposition of a 
complex conceptual decision into two more primitive ones residing on the same level 
(here: conceptual): The transactionality of a service operation in the SOA decision 
model is a non-functional design concern. It affects design model elements in the 
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service, process, and integration layers; therefore, the service layer issue (ITP) has 
relations with issues in the topic groups representing two other SOA layers, PROCESS 
ACTIVITY TRANSACTIONALITY (PAT) and COMMUNICATIONS TRANSACTIONALITY 
(CT): PAT is an issue that resides on the process layer, CT on the integration layer. 
Furthermore, there are two examples of refinedBy relations: A strict one runs from the 
conceptual to the technology level (outgoing issue: CT, incoming issue: TRANSPORT 
QOS). Another one goes from the conceptual to the vendor asset level: The outgoing 
issue is PAT, the incoming is INVOKE ACTIVITY TRANSACTIONALITY (IAT).7  
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Fig. 5. Sample architectural decision model with decomposesInto and refinedBy relations. 

Figure 5 also introduces a new type of relation, forces, expressing that certain 
alternatives for the conceptual issues PAT and CT mandate the alternatives for the 
refining issues on lower levels. This is one of three relations to be defined next, 
formally capturing the relationships that may exist between alternatives. 

Definition 9 (forces, isIncompatibleWith, isCompatibleWith relations) Let  be an 
architectural decision model. Let ai, ak be architectural decision alternatives within 

. Several relations can be defined between alternatives within the same or across 
different levels and trees of the model. 

• forces(ai, ak) with i ! k and ii \ ai, ik \  ak implies ii ! ik. The forces 
relation expresses that selecting an alternative ai in one issue necessarily 

                                                           
7 This issue must reside on the vendor asset level because transactionality of invoke activities is 

not specified by the BPEL technology standard. For details, we refer the reader to  [25]. 
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means that an alternative ak in another issue has to be selected. It adds 
additional directed edges between alternatives. The relation is not 
reflexive and not symmetric, but transitive. It must not form any cycles. 

• isIncompatibleWith(ai, ak) with i ! k. The isIncompatibleWith relation 
expresses that certain combinations of alternatives do not work together. 
It adds additional undirected edges to . The relation is symmetric, but 
neither transitive nor reflexive. It must not form any cycles. 

• isCompatibleWith(ai, ak)  with i, k arbitrary. The isCompatibleWith 
relation expresses that certain combinations of alternatives work 
together. The relation defines an equivalence relation, i.e., it is reflexive, 
symmetric, and transitive and thus identifies classes of compatible 
alternatives. 

If (a1 forces a2), we also say that a1 forces a2 and that a2 is forced by a1; if (a1 
isIncompatibleWith a2), we also say that a1 is incompatible with a2 and that a2 is 
incompatible with a1; if (a1 isCompatibleWith a2), we also say that a1 is compatible 
with a2 and that a2 is compatible with a1. 

Table 3 summarizes the main properties of the relations. 

Table 3.  Logical relations between architectural decision alternatives and their properties 

Relation Set(s) Reflexive/ 
symmetric/ 
transitive 

Cardinality Other properties 

forces A × A 
 

no/no/yes n:m 
(no function) 

Still a DAG, which does not have to 
be connected. 

isIncompatibleWith A × A no/yes/no n:m 
(no function) 

– 

isCompatibleWith A × A yes/yes/yes n:m 
(no function) 

Default if no other relation exists 
between two alternatives. 

Our next two integrity constraints pertain to these three relations. 

Integrity Constraint 3 A forces relation implies that an alternative in one issue is 
incompatible with all other alternatives in that issue: 

≤ ai, aj, ak, ij \ aj, ij \ ak, j ! k: ai  forces aj u ai isIncompatibleWith ak 

 
Integrity Constraint 4 The forces, isIncompatibleWith, and isCompatibleWith 
relations between alternatives are mutually exclusive; one of them must exist. If 
nothing is defined, isCompatibleWith is the default. 

≤ai, aj : ai forces aj . ai isIncompatibleWith aj ≡ false 
≤ai, aj : ai isIncompatibleWith aj . ai isCompatibleWith aj ≡ false 

≤ai, aj : ai forces aj . ai isCompatibleWith aj ≡ false 
≤ai, aj : ai forces aj - ai isIncompatibleWith aj  - ai isCompatibleWith aj ≡ true 

Rationale and example: We compare these relations with those defined in the 
ontology from Kruchten et al. in Section 6. 

The isIncompatibleWith relation expresses that certain combinations of alternatives 
do not work with each other, for instance a NON-TRANSACTIONAL BACKEND service 
provider (not shown in Figure 5) can not be called from a service consumer that has 
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been decided to share transaction context with its provider (i.e., PAT decision to JOIN 
in Figure 5). A forces relation specifies that an alternative can only be combined with  
one alternative in a different issue. For example, a conceptual alternative to share 
transaction context (PAT decision to JOIN) requires the technology-level Enterprise 
JavaBean (EJB) transaction attribute to be set to TX_MANDATORY.  

In addition to the four formally defined integrity constraints, several heuristics can 
also be defined for an architectural decision model . 

Definition 10 (Balanced Architectural Decision Model) An architectural decision 
model  is balanced if and only if the following informally defined heuristics 
regarding its structural properties hold: 

1.  has at least two, but not more than five levels. 
2. Topic groups do not contain more than nine other topic groups and twelve 

issues. 
3. On all but the lowest level, there is at least one issue that has an outgoing 

refinedBy relation. 
4. On all but the highest level, there is at least one issue that has an 

incoming refinedBy relation. 
5. The maximum path length to get from the initial issue to any issue via the 

contains relation \ and the maximum path length to get from the initial 
issue to any issue via refinedBy and decomposesInto relations is ten. 

Rationale and example: Quality attributes such as usability and consumability for 
humans (e.g., knowledge engineers, software architects) justify these heuristics: An 
unbalanced model is difficult to maintain (for the knowledge engineer) and consume 
(for the software architect) due to the many elements per topic group and lengthy 
reasoning paths. According to studies in cognitive science and user interface design, 
three  [13] to seven (plus/minus two)  [14] entries on each level of a hierarchy are 
considered consumable. Good practices in object-oriented design give similar advice 
for inheritance trees  [17]. Heuristic 1 adopts this advice; heuristic 2 and 5 are more 
tolerant due to experience we gained during RADM for SOA creation and tool 
implementation (see Section 6): Seven to nine architectural layers are defined in many 
reference architectures, e.g., SOA reference architectures and OSI networking, and we 
often find around ten components in each layer of a component-oriented architecture. 
If the topic group hierarchy resembles the architectural layering and logical 
decomposition into components, it must be able to deal with such numbers of topics 
groups and issues. Figure 5 shows a balanced architectural decision model. 

4.3 Temporal Relations/Constraints and Decision Making Process Support  

We add a relation to our model  that facilitates the decision making process 
conducted by the software architect. Unlike previous definitions, this relation is not 
binary and defined between nodes of different types. 

Definition 11 (triggers relation) Let  be an architectural decision model. 
Let ai, aj be architectural decision alternatives in , let ik be an issue in , and let tl 
be a topic group in . 
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• triggers(ai, ik, tl) with ￢ (ik \ ai) and tl \ ik. Choosing an architectural 
decision alternative ai triggers an issue ik and with this it triggers the 
topic group tl which contains the issue. Indirectly, with the issue, all 
possible alternatives are triggered to direct the architect in the decision 
making process to the next recommended focus point, i.e., an issue that 
can be resolved next. The relation adds additional directed edges to the 
model. The relation must not form any cycles when combined with ik \ aj. 

If triggers(ai, ik, tl) we also say that ai triggers ik  and that ik is triggered by ai. 
Table 4 summarizes the main properties of the relation. 

Table 4.  Temporal relation in architectural decision models and its properties 

Relation Set(s) Reflexive/ 
symmetric/ transitive 

Cardinality  Other properties 

triggers A × I × T n/a  
 

n:m:1 
(no function) 

Forms one or several DAGs, 
but not a tree.  

Rationale and example: The triggers relation expresses a causal and therefore also 
temporal ordering during the decision making process. As we will see in Section 5, it 
is often combined with refinedBy or decomposesInto relations to form certain 
dependency patterns. Note the suggestive nature: It is permitted to resolve issues that 
have not been triggered (yet) and multiple triggers may exist per issue. It is possible 
that an alternative and an issue (and containing topic group) do not have any triggers 
relation. It would be far too restrictive for the architect to define a strictly enforced 
decision ordering based on these relations.  

The triggers relation must satisfy the following integrity constraints:  

Integrity Constraint 5 If an issue ii is refined by or decomposes into another issue ij 
then any alternative in ii triggers ij:  

≤ ii, ij, ai, ii \  ai: ii refinedBy ij - ii decomposesInto ij u ai  triggers ij 

Integrity Constraint 6 A forces relation between alternatives ai and aj implies a 
triggers relation between ai and the issue that contains aj: 

≤ ii, ij, ai, aj : ii \ ai .  ij \ aj . ai forces aj u ai triggers ij 

In the next step, we define two more integrity constraints regarding the triggers 
relation. The logical implications caused by integrity constraints 5 and 6 allow us to 
define these solely on triggers relations (i.e., it is not required to include refinedBy, 
decomposesInto, and forces in the definitions):  

Integrity Constraint 7 (Trigger Compatibility) Let ai triggers ij hold. Let I(ai) be 
the set of issues that can be reached from ai following triggers relations and the 
contains relation \ within one tree km starting with alternative ai. Note that I(ai) can 
reach into other trees ln.8 

                                                           
8 I(ai) can be calculated like this: Initialize I(ai) with all issues triggered by ai. Iterate: For any 

issue i added in the last iteration, follow the triggers relations originating in alternatives 
contained in i and add the target issues. Re-iterate if any issues were added in this iteration. 



20 

Then ai must either have an isCompatibleWith relation with at least one 
alternative ax or a forces relation with exactly one ax for every ij c I(ai) and ij \ ax: 

≤ ai, ax c A ≤ ij c I(ai):  
ij \ ax u ai isCompatibleWith ax - ai forces ax 

Integrity Constraint 8 (Top-Down Progression) Let ii \ ai and ai triggers ij. ij must 
then reside on a lower level than ii or, if ii and ij reside on the same level, ij must be 
greater than ii according to <.  

Rationale and example: Certain combinations of triggers, isIncompatibleWith, and 
forces relations should not occur. To give a simple example, an alternative must not 
trigger the issue in which it is contained (\ relation). Less obvious consistency 
problems can occur when chaining more issues and alternatives together.  

While a top-down approach to architecture design is taken in many methods, it can 
not always be applied in practice. When modernizing enterprise applications, many 
technology- and vendor asset-level decisions have already been made prior to project 
start (e.g., those pertaining to legacy systems). When procuring a software package, 
the procurement decision mandates a certain interface, transaction, and session 
management design. When deciding for a certain application server strategically, a 
vendor asset level decision is upgraded to the executive level. An architectural 
decision model for such a setting does not satisfy integrity constraint 8 (top-down 
progression). Hence, integrity constraint 8 is not always met in practice. 

Definition 12 (Valid and Strictly Valid Architectural Decision Model) An 
architectural decision model  is called valid if integrity constraints 1 to 7 hold. If  
is valid and integrity constraint 8 also holds,  is called strictly valid. 

Rationale and example: The transaction management example in Figure 5 meets all 
constraints. Therefore, it is a strictly valid architectural decision model.  

Figure 6 illustrates several modeling errors. The model is not balanced due to the 
cyclic refines relations (i1, i2, i3), violating Definition 8 and Definition 10. It is not 
valid, either:  a21 forces a13 and can therefore not be compatible with a12 (integrity 
constraint 3). Alternatives a12 and a21 can either be compatible or incompatible but not 
both (integrity constraint 4). i2 refinedBy i1 violates integrity constraint 8 due to the 
triggers relation implied by integrity constraint 5. a21 forces a13 implies a21 triggers i1 
(integrity constraint 6), but the implied triggers relation is not present in the model. 
a32 triggers i4, but there is no compatible alternative (as required by integrity 
constraint 7). a32 triggers i2 which resides in a higher level (violating integrity 
constraint 8). 

 



       

21 

an/a

i1i1

a11

a13

a12

i2i2

a21

a22

i3i3

a31

a33

a32

t

icw

r

r

r

icw

f

Modeling errors:

1. Model not balanced due to 
cyclic refines relations (i1, i2, i3), 
violating Definition 10

2. a21 forces a13, can therefore not
be compatible with a12 (IC 3)

3. a12 and a21 either compatible or
incompatible (IC 4)

4. i2 refinedBy i1 violates IC 8 due
to triggers implied by IC 5

5. a21 forces a13 implies a21 triggers
i1 (IC 6), but triggers relations 
not present in model

6. a32 triggers i4, but there is no 
compatible alternative (IC 7)

7. a32 triggers issue i2 in higher
level (IC 8)

(t)riggers

isCompatibleWith (cw), 
isIncompatibleWith (icw)

contains

cw

L0

Concep-
tual

L2

Vendor
Asset

L1

Technology

(r)efinedBy

i4i4

a41

cw

t

(f)orces

 
Fig. 6. Sample decision model violating integrity constraints. 

Decision making process support. So far, we focused on modeling reusable 
architectural decision knowledge. We can now define how architectural decision 
models can be traversed on projects: We first define where to begin with the decision 
making and formalize ADOutcomes, which we then classify by their processing status 
determined by triggers relations.  

Definition 13 (Entry Points, EP) The architectural decision Entry Points (EP) are 
the set of architectural decision issues in an architectural decision model  that do 
not have any incoming triggers relations: 

EP = { i c I x a a c A: (a triggers i )} 

Rationale and example: Entry points are a natural starting point for architecture 
design activities in a given project or project phase. There can be multiple ones. In 
Figure 5, the INVOCATION TRANSACTIONALITY PATTERN decision is the only entry 
point, which is marked as such. Note that the triggers can be implied by 
decomposesInto or refinedBy relations (IC5) as well as forces relations (IC6).  

As we motivated in the example in Section 3, certain issues may have to be 
resolved multiple times, e.g., if the architecture applies a pattern such as “business 
process” or “service” multiple times. Each outcome captures a single decision made 
to resolve an issue. Hence, the UML metamodel from Section 3 specifies the 
dependency relation from ADIssue to ADOutcome to be 1:n. In the formalization of 
the metamodel, this multiplicity is not defined yet. We add this support now: 



22 

Definition 14 (Outcome Instances, Open and Resolved Instances) Let O be a set of 
outcome instances O = {(name, candidateAlternatives, status)x name c Strings, 
candidateAlternatives ` A, status c {open, implied, resolved}} in a valid 
architectural decision model  where name indicates which element in the 
architecture is affected by the outcome instance, candidateAlternatives is the subset of 
the alternatives contained in the issue to be considered for this outcome, and  status is 
a marking that is open initially and becomes resolved to indicate that zero or one 
alternative have eventually been chosen by the architect.  

If status is open, the outcome instance is called open outcome instance; if it is 
resolved, it is called resolved outcome instance. An implied status indicates that 
the decision can be concluded due to logical relations with outcome instances that 
have been resolved elsewhere. 

Rationale: Outcome instances can be created to represent multiple occurrences of an 
issue in a project (recall the business process example in Section 3); their introduction 
models the transition from capturing reusable architectural knowledge (issues, 
alternatives) to the project-specific usage of this knowledge. Outcome instance names 
can either reference textual element identifiers in design models (e.g., business 
processes and Web services in SOA design) or integrate elaborate decision scoping 
concepts such as those described by Jansen and Bosch  [5].  

Outcome instances preserve and extend the tree structure of ADMs:  

Definition 15 (hasOutcome relation \O) Let \O  ` I × O be a hasOutcome relation 
defined between issues and outcome instances. The cardinality of the relation is 1:n. 
All outcome instances that have a hasOutcome relation with the same issue must have 
different names. 

Table 5 summarizes the main properties of the relation. 

Table 5.  hasOutcome relation in project-level architectural decision models and its properties 

Relation Set(s) Reflexive/ 
symmetric/ transitive 

Cardinality  Other properties 

hasOutcome I × O n/a  
 

1:n 
(function) 

Preserves and extends topic 
group and issue tree.  

Rationale: An issue can be resolved by multiple outcome instances, but each outcome 
instance resolves exactly one issue and chooses exactly one alternative. Outcome 
instances are created on a project; the candidateAlternatives attribute is set to all 
alternatives contained in the issue initially. During decision making, alternatives that 
cannot be chosen or are rejected (for whatever reason) are pruned from the 
candidateAlternatives attribute until zero or one alternatives remain, which means that 
the outcome instance can be implied or resolved by the architect. 

Definition 16 (Open and Resolved Issue) An open issue is an issue which has a 
hasOutcome relation with at least one open outcome instance. A resolved issue (also 
called decision made) is an issue whose outcome instances are all resolved. 

Rationale and example: Figure 7 adds three outcome instances WS1 to WS3 to the ITP 
issue and three outcome instances WS1 to WS3 to the PAT issue from the previous 
example (a total of six outcome instances). The two outcome instances ITP WS1 and 
PAT WS1 are open; hence, both issues, ITP and PAT, are open as well. 
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Fig. 7. Eligible and pending outcome instances in transaction management example. 

Figure 7 classifies issues and outcome instances not only into open and resolved 
ones, but even further into eligible and pending ones:  

Definition 17 (Eligible and Pending Outcome Instance) Let oi be an open outcome 
instance in an architectural decision model . Let oj be any other open outcome 
instance that has the same name as oi (i.e., oi and oj refer to the same architecture 
element). Let ii hasOutcomeInstance oi and ij hasOutcomeInstance oj with ii ! ij. Let aj 
be any alternative contained in ij. We call oi an eligible outcome instance if there is 
no triggers relation from any such aj to ii. We call oi a pending outcome instance if 
there is a triggers relation from at least one such aj to ii.  

Rationale and example: All open outcome instances are either eligible or pending. 
Eligible outcome instances can be resolved in the next decision making step, while 
pending ones have to wait until the ones they depend on have been made. Note that 
open outcome instances can be eligible or pending because of triggers relations 
implied by refinedBy, decomposesInto, and forces relations. 

Definition 18 (Eligible and Pending Issue) An open issue is eligible if it contains at 
least one eligible outcome instance. An open issue is pending if all contained outcome 
instances are pending. 

Rationale: All open issues are either eligible or pending. Our approach is in line with 
the reasoning of Ran and Kuusela, who propose to start from issues that least likely 
have to be reverted during the decision making due to their dependencies. Many other 
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classification principles exist, which are not included in our model yet (e.g., urgency 
of stakeholder request, related development effort, or technical risk). 

In some cases, an alternative no longer has to be considered because of resolved 
outcome instances whose alternatives have isIncompatibleWith relations with other 
alternatives. We now define three production rules to introduce such reasoning: 

Production Rule 1 (Alternative Pruning) If two alternatives ai and aj have an 
isIncompatibleWith relation and ai is chosen during the decision making process in a 
resolved outcome instance, then ai prunes aj from the candidateAlternatives attribute 
in all outcome instances of the same name in which aj appears: 

≤ oi, oj c O, ai, aj c A: 
oi.candidateAlternatives ≡ {ai} . oi.status ≡ resolved 

. oi.name ≡ oj.name 

. ai isIncompatibleWith aj  
 u oj.candidateAlternatives = oj.candidateAlternatives # {aj} 

Rationale and example: For example, when a certain integration technology such as 
RESTFUL INTEGRATION is decided for, follow-up issues such as URI DESIGN and 
HIGH OR LOW REST are triggered, while all WSDL-related alternatives become 
irrelevant and can be pruned from the candidate alternatives of outcome instances of 
triggered issues.  

In some cases, the alternative to be chosen can even be implied: 

Production Rule 2 (Outcome Implication) If an alternative ai appears in the 
candidateAlternatives of a resolved outcome instance, and ai has a forces relation 
with another alternative aj, then all outcome instances with the same name that have 
aj in their candidateAlternative set must chose aj (i.e., all other alternatives can be 
pruned): 

≤ oi, oj c O, ai, aj c A: 
oi.candidateAlternatives ≡ {ai} . oi.status ≡ resolved 

. oi.name ≡ oj.name 
. ai forces aj  . aj c oj.candidateAlternatives  

 u oj.candidateAlternatives = {aj} . oj.status = implied 

Rationale and example: In Figure 7, the PAT outcomes can be implied from the ones 
for INVOCATION TRANSACTIONALITY PATTERN (as a forces relation is present). This 
has happened for the outcome instance WS2. 

The architectural decision model must be free of conflicting decisions (errors): 

Integrity Constraint 9 Only alternatives that do not have an isIncompatibleWith 
relation can be chosen within outcome instances that have the same name (i.e., either 
an isCompatibleWith or a forces relation must exist between the chosen alternatives):  

≤ oi, oj c O, ai, aj c A: 
oi.candidateAlternatives ≡ {ai} . oi.status ≡ resolved  
. oj.candidateAlternatives ≡ {aj} . oj.status ≡ resolved 

. oi.name ≡ oj.name 
u  (ai isCompatibleWith aj - ai forces aj) 
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Rationale and example: The six outcome instances in Figure 7 adhere to this integrity 
constraint. 

Definition 19 (Implied and Pruned Outcomes) An implied outcome is an outcome 
instance with all but one alternative pruned from the candidateAlternatives due to 
PR1 or PR2. A pruned outcome is an outcome instance with an empty set of 
candidateAlternatives, i.e., all alternatives have been pruned (or removed manually). 

Rationale and example: Figure 7 shows an implied outcome (PAT WS2) and a pruned 
outcome (PAT WS3). The existence of pruned outcomes merely expresses that the 
issue is not applicable for the architecture elements referred in its name (the 
architecture elements are classified and typed by the scope attribute of the containing 
issue). It does not mean that a design is incomplete or erroneous, as successfully 
resolved outcome instances of the same name may appear in other issues. We do not 
model such dependencies between outcome instances here; this requires further 
extensions of the formalization (e.g., formalize viewpoints and define cross-cutting 
integrity constraints). Such extensions are subject to future work. 

Production Rule 3 (Outcome Instance Status Update) If an outcome instance is 
implied or pruned, its outcome status is set from open to implied: 

≤ oi c O, ai c A: 
oi.status ≡ open . (oi.candidateAlternatives ≡ {}  - oi.candidateAlternatives ≡ {ai}) 

 u oi.status = implied 

Rationale: The architect still has to confirm that the implication is technically sound; 
it might as well be necessary to backtrack and revise a related decision that has been 
made previously. Hence, PR3 sets the outcome instance to an intermediate state 
implied and not to resolved.  

Definition 20 (Pruned Issue, Pruned Topic) If all outcome instances of an issue are 
pruned outcome instances, the issue is called pruned issue; if a topic group only 
contains pruned issues, it is called a pruned topic. 

With these definitions in place, we can describe the status of the decision making:  

Definition 21 (Decided Architectural Decision Model, Correct Architectural 
Decision Model) A valid decision model is called decided if all outcome instances are 
resolved outcome instances and, in turn, no open issues exists. If integrity constraint 9 
holds, the decided model is called correct. 

Rationale and example: When the decision making process completes, all decisions 
must have been made, i.e., neither eligible nor pending open issues exist.  

With these definitions in place, the decision making process can be characterized 
as follows, showing mixed initiatives by the architect A and a decision support system 
S implementing the concepts defined in this section:  
decide (in: strictly valid decision model,  
        out: decided decision model) 

  [S: set initially eligible decisions to entry points]  
  While [decision model is not decided (Def. 21)] 

  For [all eligible issues/outcome instances (Def. 18/17)] 
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    [A: Group issues/instances by scope/phase/role (Def. 2)] 
      [A: Make decisions in each group] 

 If [S: decision model not correct, i.e., violating IC 9] 
 [A: Reset selected outcome instances to open] 
 [A: Choose other alternatives] 
 Continue (with If) 

  Else 
    [S: Prune alternatives (PR 1)] 

     [S: Imply outcome instances (PR 2)] 
    [S: Update outcome instance stati (PR 3)] 
    [A: Resolve/confirm implied outcome instances] 

  End if 
    End for 
    [S: Calculate eligible outcome instances and issues] 
  End while 

5 Dependency Patterns 

In this section, we generalize the SOA decision modeling examples introduced so far 
into broadly applicable dependency patterns. The patterns combine certain decision 
types introduced in Section 3 with certain instances of refinedBy, isIncompatibleWith, 
forces, and triggers relations defined in Section 4.  

Figure 8 introduces a second decision modeling example, the design of an 
integration architecture starting with the classical BROKER pattern.  
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Fig. 8. Refinement and decomposition of pattern adoption decision about integration broker. 



       

27 

The model is a strictly valid architectural decision model adhering to all integrity 
constraints defined in Section 4. The same three levels as in the previous example 
shown in Figure 5 are defined. Several instances of the decision types introduced in 
Table 1 are present. The architectural PSD about an INTEGRATION STYLE in the 
conceptual level is the only entry point; one of its alternatives has an outgoing 
triggers relation with an architectural PAD regarding a pattern variant on the same 
level (BROKER TYPE). The pattern variants are modeled as alternatives of the 
architectural PAD. They constrain the possible choices for the TSD and TPD issues  
on the technology level. Here, the architectural PAD is refinedBy a TSD 
INTEGRATION TECHNOLOGY. Its WS-* alternative triggers one TPD, SOAP COMM 
STYLE. The REST alternative triggers another TPD HIGH VS LOW REST. If the 
INTEGRATION TECHNOLOGY is WS-* and not REST, there is no need to decide for a 
certain URI design style, which is the scope of the HIGH VS LOW REST decision.9 

In Figure 8, the relations between the technology level and the vendor asset level 
resemble those between the conceptual level and the technology level. The TSD 
INTEGRATION TECHNOLOGY is refinedBy a vendor ASD SOAP ENGINE, which 
triggers a vendor ACD AXIS2 DEPLOYMENT MODE; the rationale is that different 
SOAP engines require different proprietary ACDs. These are the first two examples 
of a recurring dependency pattern. The refinedBy and the forces correspondences 
between the JOIN alternative of the PAT issue and the PARTICIPATES alternative of the 
IAT issue in Figure 5 in Section 3 can also be seen as instances of this pattern. A 
fourth instance of this pattern can be observed between CT and TRANSPORT QOS, also 
in Figure 5. In this case, the originating decision resides on the conceptual level and, 
unlike in the other pattern instances, the destination resides on the vendor asset level.  

Figure 9 generalizes these examples of cross-level dependencies, commonly 
occurring between certain types of decisions, into two dependency patterns, 
TECHNOLOGY LIMITATION and PRODUCT LIMITATION. TECHNOLOGY LIMITATION has 
a triggers relation originating in an alternative of a PSD or PAD on the conceptual 
level; the target is a TSD or TPD on the technology level. This triggers relation is 
accompanied by at least one forces or isIncompatibleWith relation. An analogous 
structure can be observed for PRODUCT LIMITATION, this time between a TSD/TPD 
and an ASD/ACD. 

  

                                                           
9 Not all relations that exist in the real model are shown in the figure and explained in the text 

(in the interest of readability). 
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Fig. 9. Decision making patterns (top down): TECHNOLOGY LIMITATION, PRODUCT LIMITATION. 

The next two examples of recurring combinations of relations, which we call 
TECHNOLOGY LED DESIGN and VENDOR PUSH, lead to a rather controversial 
discussion: Depending on the perspective, the examples can be classified as patterns 
or anti-patterns. Figure 10 illustrates that triggers relations now run from lower to 
higher levels; the same holds true for forces and isCompatibleWith relations. Top-
down refinedBy relations are not modeled. As a consequence, the entry points do not 
reside on the conceptual level, but on the technology and the vendor asset level.  

TECHNOLOGY LED DESIGN and VENDOR PUSH logically constrain the decision 
space. They are patterns if a bottom-up, technology- or vendor-centric IT strategy is 
in place. Indicators for such a strategy are terms such as “emerging technology 
leadership” or a “strategic partnership” in the IT strategy, or “buy” is stated to be 
preferred over “build”. Integrity constraint 8 is violated deliberately; the architectural 
decision model is not strictly valid. This violation speeds up the decision making 
process and ensures architectural consistency. However, if a strictly requirements-
driven, top-down approach to architectural design is followed and vendor 
independence is a high priority decision driver, these patterns become anti-patterns, as 
they might lead to solutions that do not satisfy all (non-)functional requirements in an 
optimal way and tend to lead to less portable solutions (known as “vendor lockin”).  
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Fig. 10. Decision making patterns (bottom-up): TECHNOLOGY LED DESIGN, VENDOR PUSH. 

6 Model Analysis, Practical Use, and Implementation 

As already mentioned in the introduction and in Section 2, the formalization presented 
in this paper has its origins in an industrial research and knowledge engineering 
project we have been conducting since January 2006, SOA Decision Modeling 
(SOAD). SOAD has three project objectives and types of results:  

1. Defining the fundamental concepts of a decision-centric architecture design 
method. Sections 3 and 4 of this paper contribute a domain metamodel and a 
formalization of decision dependencies, integrity constraints, and production 
rules to this method. The application of the method to enterprise application 
design and the relationship with pattern languages is presented in  [26] [28]. 

2. Providing reusable decision content (architectural knowledge) for SOA 
construction projects. Excerpts from this RADM for SOA already served as 
examples in this paper (Sections 3 to 5). More decisions are featured in 
other publications  [15] [24] [27].  

3. Demonstrating how the decision modeling concepts can be implemented 
and how the decision content can be managed collaboratively with the help 
of a tool. Architectural Decision Knowledge Wiki, made publicly available 
in March 2008, serves this purpose  [19].  
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We validate our research results by analysis, implementation and experiment, as 
well as industrial case studies involving action research. To analyze the maturity of 
the domain metamodel, Section 6.1 compares our dependency modeling with an 
existing taxonomy (analysis). The SOA content and the tool support are two more 
means of validation for the SOAD concepts (implementation). We give an overview 
of the content and tool validation results in Sections 6.2 and 6.3.  

6.1 Comparison with a State-of-the-Art Taxonomy 

Table 6 compares the dependency types from  [12] with those from Section 4. 

Table 6.  Dependencies defined by Kruchten et al. and their representation in our formal model 

Relation type Corresponding relation in our model Comparison and assessment 
Constrains forces, isCompatibleWith plus integrity 

constraints 
Our approach as defined in Sections 3 
and 4 is slightly more elaborate 

Forbids isIncompatibleWith, pruning Our approach separates logical and 
temporal aspects 

Enables triggers Same concept, but two entities appear 
in our approach (issue , alternative) 

Subsumes refinedBy, decomposesInto plus 
integrity constraints 

Our approach is slightly more 
elaborate, using the level concept 

ConflictsWith isIncompatibleWith, pruning Same concept, but an additional  
entity is used (alternative) 

Overrides Compares to concepts of outcome 
instances 

Can be expressed with ADOutcome 
concept from UML metamodel 

Comprises decomposesInto  Same concept, inverse direction  
IsAnAlternativeTo contains relation \, alternatives with 

same parent decision (siblings) 
Not between alternatives, but between 
ADIssue and ADAlternative instances 
in our approach (same expressivity) 

IsBoundTo ADTopicGroup node, decision scoping 
concept  [26] 

Approaches have similar modeling 
capabilities, but use different entities 

IsRelatedTo influences Same expressivity 

A major difference is that Kruchten et al. define binary relations over a single 
entity, namely the decision, whereas our UML metamodel defines five classes: 
ADLevel, ADTopicGroup, ADIssue, ADAlternative, and ADOutcome. As the table 
shows, the semantics of the various dependency relations, however, is very similar. 
Our model is formally defined. For five of Kruchten’s relations, we provide more 
elaborate modeling concepts due to the representation of alternatives as an entity. 

6.2 Practical Use of Modeling Concepts: Reusable ADM for SOA 

We applied the UML metamodel from Section 3 and the formal modeling concepts 
from Section 4 to enterprise application development and SOA design to produce the 
second result of the SOAD project, content. Our Reusable Decision Model (RADM) 
for SOA is a balanced architectural decision model with four levels which is strictly 
valid. Its initial content originated from several large-scale SOA development projects 
we conducted from 2001 to 2005  [24]. Since then, the content was extended and 
refactored several times; architectural knowledge from a practitioner community was 
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incorporated (more than 30 projects, yielding more than 200 issues). The metamodel 
remained stable since September 2006. Figure 11 outlines the structure of the RADM:  
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Fig. 11. Layers and levels in RADM for SOA. 

The four levels were introduced in Section 3. Each box represents one topic group. 
The same top-level topic groups are defined on the conceptual, the technology, and 
the vendor asset level: They represent seven logical SOA layers: consumer, process, 
service, component, resource, integration, and Quality of Service (QoS) layer. For 
instance, one of these topic groups (“Consumer Layer”) contains issues about the 
service consumer layer on the conceptual level. Two topic groups on each level 
contain issues pertaining to the logical and physical viewpoint that can not be 
assigned to any SOA layer. There are many instances of the seven decision types from 
Table 1 in Section 3, e.g., the Pattern Selection Decision (PSD) MESSAGE EXCHANGE 
PATTERN.  

Not shown in Figure 11, various relations as defined in Section 4 are modeled. All 
integrity constraints defined in Section 4 are met, including trigger compatibility and 
top-down progression. A GO NO GO DECISION serves as a single global entry point. 
The model can be tailored and irrelevant parts removed, e.g., if only issues dealing 
with layer 5 processes (workflows) are of interest in a particular project context. After 
such tailoring step, new entry points become available, typically residing in the 
conceptual logical viewpoint topic group. The logical and temporal dependency 
relations are preserved. About a dozen subject area keywords are defined and 
expressed as topic tags (which is an ADIssue attribute according to Definition 2), e.g., 
session management, transaction management, security, and error handling. 

At present, the RADM for SOA consists of 86 topic groups and 389 issues with 
~2000 alternatives. The knowledge base is still growing, now at a slower pace than in 
the beginning of the project. While this growth could continue forever (at least in 
theory), we plan to freeze the knowledge engineering once the 500 most relevant 
issues have been compiled. The knowledge base will still have to be reviewed 
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periodically to ensure that the contained information remains up to date. Issues and 
alternatives will become obsolete as technology evolves; new ones will be required. 
The knowledge engineer can utilize the dependency relations, integrity constraints, 
and structural heuristics defined in this paper during this maintenance process. 

6.3 Tool Implementation: Architectural Decision Knowledge Wiki 

Architectural Decision Knowledge Wiki is a model-based collaboration system that 
implements the domain metamodel defined in Section 3. The central concept is the 
architectural decision model from Definition 7 in Section 4. The levels are freely 
configurable; users are not obliged to stick to the conceptual, technology, vendor asset 
level structure used in this paper and in the RADM for SOA. These levels, however, 
have proven to be appropriate for structuring the SOA content. 

Figure 12 shows a screen capture of the wiki page displaying ADIssue and 
ADAlternative instances: 

 
Fig. 12. Screen capture of Architectural Decision Knowledge Wiki. 

The main model structuring principle is the level and topic group hierarchy. At 
present, Architectural Decision Knowledge Wiki supports about 50 use cases, 
providing decision modeling functionality in the following areas:    

• Import and export of decision content (architectural knowledge). 
• Create, read, update, and delete operations on ADTopicGroups, 

ADIssues, ADAlternatives, and ADOutcome instances. 
• Decision lifecycle management and community involvement. 
• Relationship editor. 
• Search and filter by role, phase, and scope attributes, by topic tag, and by 

decision driver. 
• Report generation.  
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Architectural Decision Knowledge Wiki is available on IBM alphaWorks  [19]; an 
earlier version of it is described in detail in a separate publication  [18]. The tool has 
already been used in several industrial projects and training classes. More than 200 
users are registered in a company-internal hosted instance. More than 600 interested 
parties downloaded the tool from IBM alphaWorks.  

The integrity constraint checks, heuristics for balanced architectural decision 
models, and production rules are implemented in an advanced prototype that is not yet 
publicly available. 

Many change cases have already been identified based on feedback from early 
adopters. For instance, the containment-oriented view shown on the left in Figure 12 
was not seen to be sufficient. Therefore, we designed an additional AD Status 
Overview view in the advanced prototype. This view makes use of the classification 
of decisions into entry points, eligible, pending, and implied issues as introduced in 
Definitions 13 to 21. Integration with other tools used by architects, for example 
UML modeling environments, requirements engineering tools, and development team 
collaboration platforms, was also requested as a future extension. 

7 Conclusion and Outlook 

In this paper, we presented a formal model for capturing and reusing architectural 
decision knowledge. Our approach extends existing proposals for retrospective 
architectural decision capturing with a formal definition of architectural decision 
models and modeling concepts for collaboration and reuse. We used this model to 
capture 389 SOA issues. Decision types such as executive decisions, pattern selection 
and adoption decisions, technology selection and profiling decisions, as well as asset 
selection and configuration decisions appear in this model. Selected decisions from 
this SOA decision model served us as examples. 

The decision types introduced in Section 3, the relations defined in Section 4 and 
the dependency patterns from Section 5 serve several purposes: First, they help 
knowledge engineers and software architects to detect design flaws (in reusable 
assets, on individual development and integration projects). Furthermore, they have 
educational character for consumers of architectural knowledge. Decision 
identification, making, and enforcement tools can be built that guide decision makers 
through their activities and verify integrity constraints along the way. Pruning can be 
used to cut off alternatives, issues, and entire topic group trees after a decision has 
been made. This simplifies the management of a complex decision model.  

Future work concerns formalizing additional characteristics of tree-based 
architectural decision models and the relationship between decision models and other 
model types used to document the various views on software architecture such as 
Kruchten’s 4+1 views  [10]. The design fragments from Jansen and Bosch  [5] and the 
SPEM integration from de Boer et al.  [4] can be leveraged to do so. Additional 
constraints on various relations can be expressed. Finally, integrating SOAD with 
natural controlled language such as Attempto Controlled English (ACE)  [7] is another 
promising area of future research: If SOAD decision drivers and related best practices 
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recommendations are articulated in a natural controlled language such as ACE, a 
reasoning engine can analyze them and suggest certain alternatives to the architect.  

We envision several advanced usage scenarios for the concepts presented in this 
paper. Project managers can use decision models for planning purposes. Work 
breakdown structures and effort estimation reports can be created, as open issues 
correspond to required activities. Health checking is another application area: If there 
are many, frequent changes, or many questions are still unresolved in late project 
phases, the project is likely to be troubled. Product selection decisions define which 
software licenses are required, and on which hardware nodes the required software 
has to be installed. Moreover, the outcome of product-specific asset configuration 
decisions can serve as input to software configuration management. The model can 
also serve enterprise architects; they can maintain a company-specific instance of the 
decision model, consisting of a subset of issues and alternatives. Such an approach 
authorizes solution architects on projects to make decisions (“freedom of choice”) 
without sacrificing architectural integrity (“freedom from choice”). Finally, the 
reusable decision model for SOA can be used as a supplemental design method for 
SOA construction which complements and details existing service modeling methods. 
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