
Architectural Decision Identification
in Architectural Patterns

ABSTRACT
When modeling recurring architectural decisions for reuse, the
boundaries of the knowledge asset under construction must be
defined in a scoping step. This paper introduces and combines
two supporting concepts for this step, pattern-centric decision
identification rules and generic meta issues; one particular meta
issue catalog is also presented. The resulting general-purpose
decision identification method is validated by identifying 35
decisions that recur in enterprise application development and
service-oriented architecture design.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture

General Terms
Design, Human Factors, Standardization.

Keywords
Architectural Knowledge Management, Architectural Decisions,
Architectural Patterns, Enterprise Applications, SOA.

1. INTRODUCTION TO SOAD
In this paper, we present the first of seven steps in the SOA
Decision Modeling Framework (SOAD)[24]. Unlike most
previous work in the architectural knowledge management
community, SOAD does not solely focus on documenting
decisions after-the-fact, but also on guiding design work by
anticipating the decisions that will be required [25].

A central concept in SOAD is the notion of a Reusable
Architectural Decision Model (RADM), created and consumed
in seven steps. Figure 1 on the next page introduces these seven
SOAD steps along with the roles responsible for them,
knowledge engineer and software architect, and the artifacts
involved, architectural patterns described in the literature and
project-level analysis and design models.

Knowledge asset creation. To define the boundaries of a
RADM, a knowledge engineer performs the following step:

1. Identify decisions required in a domain (e.g., when
applying a certain architectural style in a particular
application genre). This step starts with a review of the
patterns that are eligible in the domain (e.g., service
consumer-provider contract, enterprise service bus,
service composition, and service registry in SOA [25]).
It returns a list of required and recurring decisions, to
be included in the RADM.

To promote modularity and flexibility, SOAD distinguishes the
identification of required and recurring decisions (step 1) from
their detailed documentation (steps 2-4), also performed by the
knowledge engineer:

2. Model individual decisions. In this step, the decisions
in the list from step 1 are documented in such a way
that the modeled knowledge can support the decision
making on projects. The level of detail may vary by
practitioner community. A metamodel, specifically
designed for knowledge sharing, supports this step
[26].

3. Structure model according to logical dependencies
between decisions. The model structure developed in
this step has the objective to make the RADM easy to
navigate and to adapt to project needs [26].

4. Add temporal decision order by modeling temporal
decision dependencies [26]. This order is leveraged
later during decision making (step 6).

It is worth noting that steps 1 to 4 may be executed repeatedly
and in an overlapping fashion to scope and populate a RADM
iteratively and incrementally.

Knowledge asset consumption. Architectural Decision Models
(ADMs) are created and used by software architects on projects
that apply SOAD. The RADM as a reusable knowledge asset
provides input to this work, which is organized in three steps:

5. Tailor model, creating an ADM from a RADM by
taking project-specific requirements into account. An initial
set of decisions required on the project is determined in this
step. These may or may not appear in the tailored RADM;
architectural decision knowledge can be added, updated, or
deleted during the tailoring (as well as later steps).
6. Make decisions. In this step, architects review the
architectural decision knowledge in the ADM created in
step 5, match this information against the project
requirements, make their decisions, and update the ADM.
When locating the relevant parts of the model in a given
project situation, they are assisted by the model structure

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICSA/ECSA 2012. August 20-24, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1568-5/12/08 ...$15.00.

Olaf Zimmermann
IBM Research – Zurich (when conducting this research)

ABB Corporate Research, Industrial Software Systems (at present)
Segelhofstrasse 1K, CH-5405 Baden-Dättwil, Switzerland

olaf.zimmermann@ch.abb.com

and the temporal order of the decisions developed in steps 3
and 4.
7. Enforce decisions. In this step, architects share the
rationale for the decisions made in step 6 and captured in
the ADM. They update other architectural artifacts
accordingly. Via decision logs, they instruct the project team
which chosen alternatives to implement. Furthermore, they
provide fragments of development artifacts to demonstrate
how to implement certain architectural concepts (as a form
of coaching).

Like the earlier asset creation steps (steps 1 to 4), steps 5 to 7
also may be executed repeatedly and in an overlapping fashion.
The execution rhythm depends on the software engineering
methods and design practices in use (e.g., agile vs. iterative and
incremental vs. big design upfront).
Steps 2 to 7 are described in our previous work [26]. In this
paper, we introduce a generic meta issue catalog and seven
identification rules for step 1. The meta issues in the catalog and
a domain-specific set of architectural patterns serve as input to
step 1 in SOAD (see Figure 1). As outlined above, the output of
this step (i.e., of the execution of the identification rules) is an
initial RADM enumerating the names of decisions required and
recurring in the domain.
Combining meta issues, patterns, and identification rules yields a
method that addresses the following decision identification
(scoping) problem:

Which architectural decisions required (issues) recur?
Can such decisions be identified systematically in patterns?

2. RELATED WORK
State of the art. Pattern languages, genre- and style-specific
extensions to software engineering methods, technical papers,
and vendor documentation can be studied to identify recurring
issues. In principle, these sources of information provide deep
coverage of all issues. However, a vast amount of information
must be studied; architectural decisions are often hidden behind
various other material not targeting architects and therefore not
being presented adequately [16].
The relations between architectural patterns and decisions are
multi-faceted. Patterns per se do not aim at guiding the architect
through the architecture design activities required once a certain
pattern has been selected. The core metaphor of a pattern is
solution, not problem, even if pattern templates usually contain
an intent section or a problem statement [7]. Pattern authors
often reverse engineer the problem statement from the solution
they want to educate the readers about [11]. In the literature, we

find work on documenting decisions with
patterns [8], and how to combine pattern- and
decision-centric design[30].

State of the practice. Decisions are often
identified ad hoc based on personal experience,
not via diligent literature studies, or systematic
reuse of knowledge already gained. Independent
of the technique in use, architects have to
search for issues and pull the required
knowledge from the literature and their
experience today; methods and tools do not
push this decision knowledge to them. As a

consequence, much time is spent in the early project phases to
identify relevant issues and alternatives; important issues are
sometimes overlooked. This is particularly true for inexperienced
architects. The assessment is subjective, drawing on input from
practicing architects [26][27] and personal experience [28][29]. It
is also supported by [3][20].

3. A DECISION IDENTIFICATION AND
GUIDANCE MODEL SCOPING METHOD
To help knowledge engineers solving the decision identification
problem, we now introduce a decision identification process. It
comprises three activities:

1. For each eligible architectural pattern (e.g., patterns
defining an architectural style), review the pattern
descriptions and enumerate the logical components and
connectors [1] referenced in the pattern.

2. Apply identification rules:
1. Identify decision issues transcending a particular

system context, e.g., business domain- and
enterprise-wide ones [17][18].

2. Identify pattern-specific issues.
3. Identify technology-related issues.
4. Identify decision issues dealing with products and

open source assets.
Two supporting techniques can be applied in this step:
a) screen sources of architectural decision knowledge
such as supplemental design artifacts (e.g., books about
an architectural style such as SOA [13][14]) and b)
instantiate generic meta issues to find relevant
knowledge. We will describe these supporting
techniques in Section 5.

3. Add issues from activity 2 to RADM if and only if:
1. They are architecturally relevant (i.e., satisfy the

definition of an architectural decision).
2. They have a high potential to recur (i.e., they are

not project-specific).
3. They are not already present in the RADM.

The RADM creation activities continue until the model is rich
enough to support design work on projects. No firm termination
condition can be given for a technique targeting human
knowledge engineers: According to our experience (e.g., see case
study 3 in Chapter 9 of [24]) and assuming a codification strategy
for architectural knowledge management, up to a dozen issues
should be added for atomic patterns and about 20 to 30 for
composite patterns. Editorial quality and technical accuracy have
higher priority than quantity (“if in doubt, leave it out”) [27].

Decision Identification

Meta Issue Catalog

Asset
Creation
Phase

Architectural
Patterns RADM Knowledge Engineer

(Community)

Asset
Consumption

Phase

Analysis and Design
Models ADM Software Architect

(Project)

Step 5:
Tailor Model
(create ADM)

Step 1:
Identify

Decisions Steps 2-4:
Populate

Steps 6-7:
Use

Figure 1. SOAD step 1 in context.

4. DECISION
IDENTIFICATION RULES
Contemporary architecture design methods
emphasize the need to refine and elaborate
designs iteratively and incrementally. The
importance of a global view is also stressed
[9]. Following the same principles of stepwise
refinement and separating such global view
from that on individual design model elements,
we introduce seven Identification Rules (IRs)
to organize activity 2 in our decision
identification method:

IR1. Identify pattern- and style-
independent decision issues with project- or enterprise-
wide scope. We call decision issues identified with IR1
executive decisions, adopting a term from [16].

IR2. For each pattern that is eligible (output of activity 1
from the previous section), add one issue to the RADM,
deciding whether the pattern is used or not. We call
issues identified with this IR Pattern Selection
Decisions (PSDs). Eligible patterns can be found in
patterns books, e.g., [2][5][6][12].

IR3. Identify Pattern Adoption Decisions (PADs) in PSDs,
already identified PADs, and the logical components
and connectors comprising the patterns involved in
these PSDs and PADs (according to output of activity
1). Section 5 below introduces two supporting
techniques for this IR.

IR4. For each logical component and connector that is part
of a pattern referenced in a PSD or PAD, add one issue
concerning its implementation technology. Such issues
may present alternatives regarding integration
middleware and application servers as well as
application and network protocols. We call issues
identified with this IR4 Technology Selection Decisions
(TSDs).

IR5. Identify Technology Profiling Decisions (TPDs) in
TSDs, supported by the techniques presented in Section
5 below.

IR6. For each technology appearing in a TSD, add one issue
deciding which vendor asset is used to provide the
technology. Commercial, open source, and company-
internal assets provide alternatives. We call issues
identified with this IR6 Asset Selection Decisions
(ASDs).

IR7. Identify Asset Configuration Decisions (ACDs) in
ASDs, supported by the techniques presented in Section
5 below.

Figure 2 illustrates the activities from Section 3 and the relations
between the seven IRs. The IRs are grouped into executive
decisions (IR1), conceptual patterns (IR2, IR3), technologies
(IR4, IR5), and vendor assets (IR6, IR7). Figure 2 also introduces
two types of relations between IRs: IRs in the same group have
decomposition relations, while relations between IRs in different
groups are called refinement relations [26].

IR1. IR1 deals with executive decisions about strategic technical
directions [16] as well as requirements analysis [19]. It pertains
to the scenario viewpoint in Kruchten’s 4+1 model [15].

Examples of such strategic issues are platform directions (e.g.,
programming language, operating system, and hardware
preferences) as well as strategic, cost-intensive decisions
regarding network and server topologies (e.g., setup of
geographically distributed data centers, standalone server versus
high availability server cluster), but also decisions about the
software engineering methods and tools to use (as far as these
decisions concern the architect).

IR2, IR3. The need for PSDs is obvious if a pattern-centric
design approach is followed. Patterns can be found in all
architectural viewpoints; many existing patterns take a logical
viewpoint [15]. PSDs identified with IR2 have a long lasting
impact on project and solution health; many functional and non-
functional decision drivers must be considered. Design concerns
such as user channel diversity, process and resource integrity,
integration challenges, and semantics dissonances [24] provide
many of these decision drivers.
PADs then deal with selected patterns in a detailed way. Many
pattern descriptions list variants; one or more variants have to be
selected once a PSD has been made. For instance, the description
of the “broker” pattern in [2] lists “direct communication” as a
variant; hence, deciding for or against this variant is a PAD. A
bullet list in the solution part of a pattern text may also indicate
variability, requiring a PAD. Many pattern books supply
navigable diagrams or decision trees to show how composite and
atomic patterns in a pattern language relate to each other [5].
Pattern grammars are emerging as well [22]. These design
options may also lead to the identification of one or more PADs.1

IR4, IR5. When refining a conceptual, platform-independent
design based on patterns into an implementable, platform-
specific one, decisions about implementation technologies must
be made: TSDs identified with IR4 select certain technologies
that implement the patterns selected in PSDs and adopted in
PADs.
TPDs identified with IR5 follow TSDs. They specify
implementation details, e.g., which version or subset of a
technology standard to employ or which design alternatives
permitted by a standard to pick. XML SCHEMA (XSD)
CONSTRUCTS is an exemplary TPD issue recurring in SOA
design: due to the large scope of the technology standard, the

1 If two patterns have similar or identical intent, context, or forces sections,

they can be combined into a single PSD. This is a modeling decision of the
knowledge engineer.

1. Review Patterns,
List Components
and Connectors

2. For each pattern, start with IR2 and trigger follow-on IRs:

IR1

2. Identify executive decisions

IR3IR3IR2

IR5IR4

IR7IR6

Conceptual Patterns
(PSDs, PADs)

Technologies
(TSDs, TPDs)

Vendor Assets
(ASDs, ACDs)Decomposition

Refinement

a. Screen architecture design artifacts when applying any IR.
b. Screen meta issue catalog when applying IR1, IR3, IR5, IR7.

1..n 1..n

1..n

1..n

1..n

1..n

3. Add if relevant/required/recurring

Figure 2. Identification rules in decision identification method.

subset of the XSD language constructs used to model XML
request and response messages must be decided.
Technology-level decisions are more concrete than those
pertaining to pattern selection and adoption; measurable decision
drivers regarding interoperability, performance (i.e., response
times and throughput), and scalability apply.

IR6, IR7. ASDs and ACDs identified with IR6 and IR7 pertain
to assets that provide and support the technologies selected in
TSDs and profiled in TPDs. In SOA design, commercial
products, open source, and company-internal assets supply the
alternatives. Discrepancies between abstract concepts and
implementation reality can be expressed as ACDs: Vendor
products may implement a conceptual pattern in an unusual way,
have limitations, or offer proprietary extensions.

5. SUPPORTING TECHNIQUES
This section specifies two techniques that enable the knowledge
engineer to identify issues in the literature when applying the IRs
from the previous section.

a) Screen supplemental design artifacts (all IRs). Table 1
repeats the IR cardinalities from Figure 2 and adds information
about the artifacts in which architectural knowledge about the
issues can be found, as well as additional follow-on issues. These
artifacts may be part of the definition of an architectural style
such as SOA. They may also originate from already completed
projects which applied the patterns (see Appendix B of [24]).

b) Screen catalog of generic meta issues (IR1, IR3, IR5, IR7).
IR2, IR4, and IR6 are straightforward to apply. However,
architecture design does not stop when patterns, technologies,
and vendor assets have been selected; pattern adoption,
technology profiling, and vendor asset configuration issues exist
as well [11][28][29]. According to our modeling experience,
pattern texts, technology specifications, and vendor
documentation often leave out detailed information about such
issues; insight into platform-dependent architectural qualities

such as performance and scalability
remains tacit. For patterns, this is
not the fault of the pattern author:
by design, most patterns are “soft
around the edges” [11] to make
them broadly applicable and
platform-independent. Hence, more
knowledge is required to make IR1,
IR3, IR5, and IR7 reproducible and
scope a RADM in such a way that
the issues are concrete and specific
enough to be applicable during the
design work on a project.
To provide such knowledge, we
introduce the notion of generic meta
issues: Meta issues are architectural
decisions that recur within and
across application genres, but are
not specific to any architectural
style, implementation technology,
or vendor asset. Meta issues have to

meet the qualification criteria for architectural decisions; for
instance, they must pertain to the system as a whole or to its key
components, and impact the quality attributes of the system [25].
However, they are more abstract and generic than RADM issues,
e.g., they do not reference any particular component or connector
in a pattern. Unlike patterns, they describe problems (design
concerns) rather than solutions to them. Each issue references
and instantiates one or more of the meta issues. To give an
example: “system transactionality” is a meta issue because usage
of the concept is common in many application genres. Fowler [6]
instantiates the meta issue into an issue giving concrete advice
for enterprise application architectures and concurrency
management in application servers that support a Web-based
presentation layer.

A meta issue catalog makes formerly tacit knowledge explicit.
Table 2 presents an example of a meta issue catalog, harvested
and compiled from architecting experience in the enterprise
application genre since 1995 [28][29].
The meta issues in this catalog are relevant and recurring in
enterprise application development and integration because they
address common design concerns (i.e., user channel diversity,
business process and resource integrity management, integration
challenges, and semantic dissonances) [24]. Solutions to these
challenges exist in pattern form; these patterns then become
architecture alternatives resolving identified issues, e.g.,
[2][5][6][12].
The meta issue catalog merely serves as reference and input to
SOAD step 1 (decision identification, performed by the
knowledge engineer); it is neither self-explaining nor self-
containing. To apply our technique, the knowledge engineer must
be familiar with the subject matter and/or have project
experience with the architectural concerns indicated by the meta
issues. The referenced literature provides related background
information.

Table 1. Identification rules, cardinalities, and artifacts to be screened.

Identification
Rule

Cardinality (Section 4) Artifacts to be Screened

IR1: Identify
executive decisions

Apply once (specific for
application genre)

Enterprise architecture documents, project
proposals, system context diagrams, meta issues
(Table 2)

IR2: Identify PSDs Apply once per architectural
pattern (e.g., in definition of an
architectural style)

Architectural style definition, table of content,
overview diagrams, and cheat sheets in pattern
books

IR3: Identify PADs
in PSDs and PADs

Apply multiple times per
PSD/PAD and logical component
and connector in pattern

Descriptions of architectural patterns (online,
text books), pattern variants and grammars,
meta issues

IR4: Identify TSDs
in PSDs and PADs

Apply once per logical component
and connector in pattern

Enterprise architecture documents, standards
bodies (e.g., IEEE, ISO, W3C, OASIS)

IR5: Identify TPDs
in TSDs

Apply one or more times per TSD Technology standards and primers, tutorials,
meta issues

IR6: Identify ASDs
in TSDs

Apply once per technology
appearing in a TSD

External parties (analyst reports), enterprise
architecture documents

IR7: Identify ACDs
in ASDs

Apply one or more times per ASD Vendor documentation, previous projects,
existing systems, meta issues

6. VALIDATION IN SOA DOMAIN
We now report how we applied our concepts to enterprise
application development and Service-Oriented Architecture
(SOA) design, using the IR structure from Figure 2 in Section 4.

Executive level decisions (IR1 applied). With IR1, we can
identify a number of executive decisions [16]. Two of these
executive decisions are: ARCHITECTURAL STYLE2 with SOA
MESSAGING as one of several alternatives, LAYERING, and
LANGUAGE AND PLATFORM PREFERENCES with alternatives such as
MICROSOFT .NET/C#, JEE/JAVA, and LAMPP. The TOOLING
DIRECTIONS decision (e.g., OPEN SOURCE or SINGLE VENDOR) also
recurs. Identified with IR1, these are one-of-a-kind issues. The
identifying meta issues from Table 2 are “reference
architectures” and “tools”.
Two examples of decisions related to business requirements are
ANALYSIS-PHASE BPM vs. USE CASE MODELS or USER STORIES as
FUNCTIONAL REQUIREMENTS NOTATION and using BPMN or UML
ACTIVITY DIAGRAMS as BPM NOTATION. They were identified
with IR1 as well; the meta issue is “methods (processes,
notations)”.

Conceptual level decisions (IR2 and IR3 applied). The
identification rules advised us to create one PSD per pattern
(IR2) and multiple PADs per PSD (IR3). The issues in this
conceptual level (see Figure 2) deal with the following topics:

2 We set issues and alternatives IN THIS FONT in this paper (SMALL CAPS).

 Selection and adoption of SOA patterns: service
consumer-provider contract, enterprise service bus,
service composition, and service registry [24][25].

 Design of abstract, non-technical part of service
contract, corresponding to the WSDL 1.1 port type
(interface in WSDL 2.0).

 Definition of security and service management
concepts, e.g., transport- or message-layer security and
business process monitoring concepts.

 Selection of transaction management patterns.

Service contract. A PAD related to the service consumer-
provider contract pattern is to decide whether the IN MESSAGE
GRANULARITY of the service operations should be coarse or fine
in terms of the breadth and depth of the message parts (i.e.,
number of message parts, usage of scalar or complex data types).
This decision is required for each service operation. A similar
decision has to be made about the OUT MESSAGE GRANULARITY.
Furthermore, a conscious decision for the OPERATION-TO-
SERVICE GROUPING is also required. “API design” is the IR3 meta
issue for both issues (see Table 2).
A related PAD is MESSAGE EXCHANGE PATTERN: A “service
operation” appears in the SOA patterns in [24], and an IR3 meta
issue called “synchrony” appears in Table 2. Combining these
two knowledge sources identifies this issue: For each service
operation invocation, it has to be decided how to invoke atomic
services from the business activities in a process-oriented service
composition layer. Synchronous REQUEST-REPLY calls and
asynchronous ONE WAY messaging are two of the alternatives.
INVOCATION TRANSACTIONALITY PATTERN is introduced in [24].

Table 2. Generic meta issue catalog (independent of application domain).

IR and Artifact Decision Topic Meta Issues (Independent of Application Genre and Architectural
Patterns)

IR1: Enterprise
architecture
documentation

IT strategy Buy vs. build strategy, open source policy

Governance Methods (processes, notations), tools, reference architectures, coding guidelines, naming
standards, asset ownership

IR1: System context

Project scope External interfaces, incoming and outgoing calls (protocols, formats, identifiers), service
level agreements, billing

IR1: Other viewpoints Development process Configuration management, test cases, build/test/production environment staging
IR3: Architecture
overview diagram

Logical layers Coupling and cohesion principles, functional decomposition (partitioning)
Physical tiers Locations, security zones, nodes, load balancing, failover, storage placement
Data management Data model reach (enterprise-wide?), synchronization/replication, backup strategy

IR3: Architecture
overview diagram

Presentation layer Rich vs. thin client, multi-channel design, client conversations, session management
Domain layer (process control flow) How to ensure process and resource integrity, business and system transactionality
Domain layer (remote interfaces) Remote contract design (interfaces, protocols, formats, timeout management)

Domain layer (component-based
development)

Interface contract language, parameter validation, Application Programming Interface (API)
design, domain model

Resource (data) access layer Connection pooling, concurrency (auto commit?), information integration, caching
Integration Hub-and-spoke vs. direct, synchrony, message queuing, data formats, registration

IR3: Logical
component

Security Authentication, authorization, confidentiality, integrity, non-repudiation, tenancy
Systems management Fault, configuration, accounting, performance, and security management

IR3: Logical
component

Lifecycle management Lookup, creation, static vs. dynamic activation, instance pooling, housekeeping

Logging Log source and sink, protocol, format, level of detail (verbosity levels)
Error handling Error logging, reporting, propagation, display, analysis, recovery

IR5 and IR7:
Components and
connectors

Implementation technology (IR5) Technology standard version and profile to use, deployment descriptor settings (QoS)
Deployment (IR7) Collocation, standalone vs. clustered

IR7: Physical node

Capacity planning Hardware and software sizing, topologies
Systems management Monitoring concept, backup procedures, update management, disaster recovery

Enterprise service bus. INTEGRATION PARADIGM is the PSD that
originates from the enterprise service bus pattern [24]. The
pattern text of the broker pattern in [2] supplies us with more
knowledge about integration issues: “(1) define an object model.
(2) decide which type of component interoperability the system
should offer, binary or Interface Description Language (IDL). (3)
specify the APIs the broker component provides for collaborating
with clients and servers. (4) use proxy objects to hide
implementation details from clients and servers. (5) design the

broker component. (6) develop IDL compilers. Step (5) has nine
sub steps: (5.1) on-the-wire protocol, (5.2) local broker, (5.3)
direct communication variant, (5.4) (un)marshalling, (5.5)
message buffers, (5.6) directory service, (5.7) name service, (5.8)
dynamic method invocation, (5.9) the case in which something
fails […].” All these steps qualify as PADs, following the
INTEGRATION PARADIGM PSD according to IR3 (see Figure 2).

Service composition. SERVICE COMPOSITION PARADIGM with
alternatives such as WORKFLOW and OBJECT-ORIENTED
PROGRAMMING is a recurring issue. Moreover, a PROCESS

LIFETIME issue has to be decided for any executable process, with
alternatives such as long running MACROFLOW and short running
MICROFLOW. This is a conceptual abstraction of an engine-
specific design issue not handled by the BPEL specification. The
SESSION MANAGEMENT approach also has to be decided in this
context.
“System transactionality” was one of the meta issues listed in
Table 2. A RADM for SOA contains several issues dealing with
this concern, created with IR3. For instance, it has to be agreed

which RESOURCE PROTECTION STRATEGY
should be taken, e.g., SYSTEM
TRANSACTIONS or BUSINESS COMPENSATION
(or a combination thereof) [6].

Technology level decisions (IR4 and IR5
applied). The identification rules
instructed us to add one TSD per
conceptual pattern in the RADM for SOA
(IR4) and to add multiple TPDs per TSD
(IR5). The issues deal with topics such as:

 Selection of technologies
implementing the SOA patterns and
profiling of standards defining these
technologies.

 Design of the technical part of the
service contract (WSDL binding),
and decisions about WS-* standards
such as SOAP, BPEL, and UDDI.

 Selection of protocols, algorithms,
and data formats for security, e.g.,
authentication, authorization, and
encryption with Transport Layer
Security and/or WS-Security as well
as service management, e.g.,
monitoring protocols/formats.

 Technology refinement of
transaction management patterns,
e.g., the decision to use WS-
AtomicTransaction.

Service contract. For each service
invocation, the following TSDs must be
made: Which TRANSPORT PROTOCOL
BINDING should be used to invoke atomic
services from the processes in the service
composition layer, e.g., HYPERTEXT
TRANSFER PROTOCOL (HTTP) or JAVA
MESSAGING SERVICE (JMS)? Which
MESSAGE EXCHANGE FORMAT structures
request and response messages in an
interoperable manner, e.g., SOAP or

JAVASCRIPT OBJECT NOTATION (JSON)?
SOAP COMMUNICATION STYLE with alternatives
DOCUMENT/LITERAL or RPC/ENCODED is a related TPD, assuming
that SOAP was decided for as MESSAGE EXCHANGE FORMAT. The
WEB SERVICES API and JAVA SERVICE PROVIDER TYPE have to be
decided per service consumer and service provider; JAX-RPC vs.
JAX-WS and ENTERPRISE JAVABEAN (EJB) vs. PLAIN OLD JAVA
OBJECT (POJO) are Java alternatives. This issue and its
alternatives are identified with IR4 (see Table 1). Moreover, the
subset of XML SCHEMA (XSD) CONSTRUCTS used to define

Table 3. Recurring SOA issues (instantiations of meta issues).

Identification Rule SOA Pattern Issue (Decision Required)
IR1: (Technical)

Executive decisions,
Requirements analysis
decisions

n/a ARCHITECTURAL STYLE
LAYERING
LANGUAGE AND PLATFORM PREFERENCES
TOOLING DIRECTIONS
FUNCTIONAL REQUIREMENTS NOTATION
BPM NOTATION

IR2 and IR3:

Pattern Selection
Decisions (PSDs),
Pattern Adoption
Decisions (PADs)

Service consumer-
provider contract

Enterprise service bus

Service composition

IN MESSAGE GRANULARITY
OUT MESSAGE GRANULARITY
OPERATION-TO-SERVICE GROUPING
MESSAGE EXCHANGE PATTERN
INVOCATION TRANSACTIONALITY PATTERN
SERVICE PROVIDER TRANSACTIONALITY (ST)

INTEGRATION PARADIGM
COMMUNICATIONS TRANSACTIONALITY (CT)

SERVICE COMPOSITION PARADIGM
PROCESS LIFETIME
SESSION MANAGEMENT
RESOURCE PROTECTION STRATEGY
PROCESS ACTIVITY TRANSACTIONALITY (PAT)

IR4 and IR5:

Technology Selection
Decisions (TSDs),
Technology Profiling
Decisions (TPDs)

Service consumer-
provider contract

Enterprise service bus

Service composition

TRANSPORT PROTOCOL BINDING
MESSAGE EXCHANGE FORMAT
SOAP COMMUNICATION STYLE
WEB SERVICES API
JAVA SERVICE PROVIDER TYPE
XML SCHEMA (XSD) CONSTRUCTS

INTEGRATION TECHNOLOGY
TRANSPORT QOS

WORKFLOW LANGUAGE
BPEL VERSION
COMPENSATION TECHNOLOGY

IR6 and IR7:

Vendor Asset Selection
Decisions (ASDs),
Vendor Asset
Configuration
Decisions (ACDs)

Service consumer-
provider contract

Enterprise service bus

Service composition

SOAP ENGINE

ESB PRODUCT
ESB TOPOLOGY (IBM DATAPOWER
CONFIGURATION)

BPEL ENGINE
INVOKE ACTIVITY TRANSACTIONALITY

message parts in WSDL contracts and SOAP messages must be
decided. These issues are identified with IR5, following the IR3-
related meta issues about integration and component-based
development; the meta issue is “API design” (Table 2).

Enterprise service bus. A TSD following the PSD about an
INTEGRATION PARADIGM is to decide for an INTEGRATION
TECHNOLOGY such as WS-* WEB SERVICES or RESTFUL
INTEGRATION. It is identified with IR4. TRANSPORT QOS is a
related TPD identified with IR5. See [24] for more information.

Service composition. A TSD that is required for each process is
the choice of WORKFLOW LANGUAGE, e.g., BUSINESS PROCESS
EXECUTION LANGUAGE (BPEL). Some TPDs follow the TSD to
use BPEL: Which BPEL VERSION and which COMPENSATION
TECHNOLOGY to use? The BPEL standards introduce these issues
and their alternatives.

Vendor asset level decisions (IR6 and IR7 applied). ASDs are
required for all alternatives of TSDs (IR6); ACDs follow ASDs
(IR7). With support from the IR7 meta issues in Table 2, we can
identify issues about the following topics:

 Issues pertaining to assets that implement the Web
services standards, for instance, WSDL editors, SOAP
engines, BPEL engines, and UDDI registries.3

 Design of the part of the service contract related to
deployment, which corresponds to the service and port
elements in WSDL 1.1.

 Configuration of the selected products to reflect the
technology profiling choices made, including selection
and customization of proprietary APIs.

Integration ASDs are the selection of a SOAP ENGINE, of an ESB
PRODUCT, and of a BPEL ENGINE. For instance, the IBM
DATAPOWER appliance is an XML processing hardware which
implements several of the WS-Security specifications and can act
as an ESB. ESB TOPOLOGY (IBM DATAPOWER CONFIGURATION) is
a related ACD. The BPEL ENGINE decision has many vendor and
open source alternatives, including, but not limited to IBM
WEBSPHERE PROCESS SERVER, and ORACLE BPEL PROCESS
MANAGER. SOAP ENGINE has alternatives such as APACHE AXIS2.
Table 3 summarizes the RADM for SOA issues we introduced in
this section. In summary, applying the seven IRs and the meta
issue catalog to SOA patterns such as service consumer-provider
contract, enterprise service bus, service composition, and service
registry, as well as general architectural patterns such as broker,
yields an initial RADM for SOA. We identified 35 recurring
issues in this paper (all set in SMALL CAPS FONT); our full RADM
for SOA contains more than 500 such recurring issues [24][26].
The resulting RADM has been successfully validated and even
used on commercial projects. We reported about the user
feedback in our previous publications [24][27].

7. DISCUSSION AND CONCLUSIONS
This paper introduced the seven steps in SOA Decision Modeling
(SOAD) and elaborated on SOAD step 1, which deals with the

3 Many of these decisions may be made as executive decisions in practice,

e.g., if strategic partnerships with certain vendors or a single vendor policy
have been established. This is often the case for middleware such as
application servers or databases, with justifications such as direct and
indirect costs (e.g., licenses, training, and systems management).

scoping of a reusable architectural decision model (which can
serve as a design guidance model). To support this first step, the
paper introduced and demonstrated a top-down process
combining identification rules and a meta issue catalog to define
the boundaries of a reusable architectural decision model.
As we could observe in one of the case studies in [24], the
presented decision identification method increases the
productivity of the knowledge engineer significantly.
Our decision identification approach is pattern-centric:
architectural patterns serve as anchor points for the scoping of a
reusable architectural decision model. Leveraging knowledge
already captured in pattern form is a key advantage of SOAD; it
saves the knowledge engineer a significant amount of
documentation effort. The issue names in a reusable architectural
decision model create a language for a problem domain, just like
pattern names create one for a solution domain.
A key assumption of SOAD is that many of the architectural
decisions required during design (also called issues in this paper)
actually recur. The feedback obtained during the validating
industry case studies indicates that this assumption is rather
strong, but valid [24][27].
We do not claim the meta issue catalog to be complete;, it is
possible to add, update, and delete meta issues in the catalog as
needed (e.g., during tailoring). For instance, the following
sources of input can be taken into account:

 Other architectural pattern languages such as those in
[21][23]; the problem descriptions in intent, context,
forces, and consequences sections of pattern texts are
particularly knowledge-intensive and provide rich input
to the knowledge engineer.

 Architectural tactics as defined in the software
architecture literature [1].

 Design challenges explained in genre-specific literature,
e.g., tutorials, handbooks, and industry reference models
for business process management and enterprise
application integration.

 Some of the SOA literature also presents style-agnostic
knowledge [13][14].

All 35 SOA issues identified in Section 6 dealt with a logical
viewpoint. However, many issues relate to a physical viewpoint.
For example, several decisions are required to create a
conceptual operational model, e.g., about clustering or a certain
network topology. Follow on decisions are required to refine such
operational model on the technology level, for instance selecting
a certain data replication mechanism supporting backup or
failover concepts specified on the conceptual level. Even more
detailed decisions are required to create a vendor-specific
operational model, e.g., concerning the proprietary system
management scripts required to deploy the selected backup or
failover technology, the installation of heartbeat and takeover
protocols, and the configuration of servers and network
equipment (e.g., firewalls). Further details regarding decisions
about the physical viewpoint are out of scope of this paper.
The presented top-down identification process must be
complemented with a bottom up knowledge harvesting method to
ensure continuous content contributions from industry projects.
This method must provide a repeatable process, criteria whether
a decision qualifies for inclusion in a reusable architectural

decision model, and decision modeling guidance. Such process,
criteria, and guidance are described in [24] and [27].
The issue catalog produced in step 1 of SOAD (described in this
paper) does not give any advice how to document and use the
issues; in this paper, we have only named them and touched upon
alternatives and dependencies in anecdotal form. In our previous
publications, we presented how to model, structure, order, and
use issues once they have been identified [26][27]. It is not
mandatory to perform all these steps; the issues identified in step
1 are already suited as review checklists, may serve as input to
design workshops, and are able to supplement other architecture
design methods such as attribute-driven design [1]. The
additional usage scenarios and validation results described in
[24] support this statement.
Our identification rules and meta issues leave many modeling
choices to the knowledge engineer; this is deliberate. It is
possible to combine or remove issues, e.g., if a pattern itself
already resolves a meta issue, or the related knowledge cannot be
made reusable (model tailoring).
We propose a human-centric approach to decision identification,
rather than an algorithm than can be fully implemented in a tool.
We considers this to be adequate given the current state of the art
and the practice. For further automation, it would be required to
capture expert knowledge in machine-readable form and apply
data mining techniques. This appears to be overly ambitious,
requiring strong assumptions regarding the formalization of input
models and a highly stable application genre.

Despite its name, SOAD is not a SOA domain-specific solution,
but provides a general-purpose decision modeling framework.
The SOAD concepts were originally introduced in [24] in 2009;
since then, we have applied and validated them successfully in
non-SOA domains, including cloud computing and strategic
outsourcing [27].

8. REFERENCES
[1] Bass, L., Clements, P., Kazman, R., Software Architecture in Practice,

Second Edition. Addison Wesley, 2003.
[2] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.,

Pattern-Oriented Software Architecture – a System of Patterns. Wiley,
1996.

[3] de Boer R.C., Farenhorst, R., Lago P., van Vliet H., Clerc V., and
Jansen A. Architectural Knowledge: Getting to the Core. Proceedings
of QoSA 2007, Springer LNCS Volume 4880/2008. Pages 197-214.

[4] Duenas, J. C., Capilla R., The Decision View of Software Architec-
ture. Proceedings of 2nd European Workshop on Software Architecture
(EWSA), Springer LNCS Volume 3527/2005, Pages 222-230.

[5] Evans E., Domain-Driven Design. Tackling Complexity in the Heart of
Software. Addison Wesley, 2003.

[6] Fowler M., Patterns of Enterprise Application Architecture. Addison
Wesley, 2003.

[7] Fowler M., Writing Software Patterns. Available online:,
http://www.martinfowler.com/articles/writingPatterns.html

[8] Harrison N., Avgeriou P., and Zdun U.. Using Patterns to Capture
Architectural Decisions. IEEE Software, IEEE Computer Society
2007. Pages 38-45.

[9] Hofmeister C., Kruchten P., Nord, Obbink J. H., Ran A., America P.,
A General Model of Software Architecture Design Derived from Five
Industrial Approaches. Journal of Systems and Software 80(1),
Elsevier, 2007. Pages 106-126.

[10] Hofmeister C., Nord R., Soni D., Applied Software Architecture.
Addison Wesley, 2000.

[11] Hohpe G., SOA Patterns: New Insights or Recycled Knowledge? Key
note at Fifth International Workshop on SOA and Web Services Best
Practices (at OOPSLA), Montreal, Canada, October 21, 2007.

[12] Hohpe G., Woolf, B., Enterprise Integration Patterns. Addison Wesley,
2004.

[13] Josuttis N., SOA in Practice – The Art of Distributed Systems Design.
O’Reilly, 2007.

[14] Krafzig D., Banke K., Slama D., Enterprise SOA, Prentice Hall, 2005
[15] Kruchten P., The 4+1 View Model of Architecture, IEEE Software,

Volume 12, Number 6, November 1995. Pages 42-50.
[16] Kruchten P., Lago P., van Vliet H., Building up and Reasoning about

Architectural Knowledge. Proceedings of QoSA 2006, LNCS 4214,
Springer 2006. Pages 43-58.

[17] Malan R., Bredemeyer D., Less is More with Minimalist Architecture.
IT Pro, IEEE Computer Society, October 2002.

[18] Pulkkinen, M., Systemic Management of Architectural Decisions in
Enterprise Architecture Planning. Four Dimensions and Three
Abstraction Levels. Proceedings of the 39th Annual Hawaii
International Conference on System Sciences, Volume 08. IEEE
Computer Society, Washington, DC, 2006. Page 179.1.

[19] Sommerville I., Software Engineering, Fifth Edition. Addison Wes-ley,
1995.

[20] Tang, A., Ali Babar, M. A., Gorton, I., and Han, J. 2005. A Survey of
the Use and Documentation of Architecture Design Rationale.
Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture. IEEE Computer Society, 2005. Pages 89-98.

[21] Völter M., Kircher M., and Zdun U., Remoting Patterns – Foundations
of Enterprise, Internet, and Realtime Distributed Object Mid-dleware.
Wiley, 2004.

[22] Zdun U., Systematic Pattern Selection using Pattern Language
Grammars and Design Space Analysis. Software: Practice &
Experience, 2007.

[23] Zdun U., Hentrich C., van der Aalst, W., A Survey of Patterns for
Service-oriented Architectures. International Journal of Internet
Protocol Technology, 1(3), Inderscience Enterprises, 2006. Pages 132–
143.

[24] Zimmermann O., An Architectural Decision Modeling Framework for
Service-Oriented Architecture Design. Ph. D. thesis, Stuttgart
University, 2009.

[25] Zimmermann O., Architectural Decisions as Reusable Design Assets.
IEEE Software, vol. 28, no. 1, Jan./Feb. 2011. Pages 64-69.

[26] Zimmermann O., et al., Managing Architectural Decision Models with
Dependency Relations, Integrity Constraints, and Production Rules, J.
Systems and Software and Services, vol. 82, no. 8, 2009. Pages 1246–
1267.

[27] Zimmermann O., Miksovic C., Küster J.M., Reference Architecture,
Metamodel, and Modeling Principles for Architectural Knowledge
Management in Information Technology Services, J. Systems and
Software and Services, vol. 85, no. 9, 2012. Pages 2014–2033.

[28] Zimmermann O., Doubrovski V., Grundler J., Hogg K., Service-
Oriented Architecture and Business Process Management in an Order
Management Scenario: Rationale, Concepts, Lessons Learned.
Companion to the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA '05). ACM, 2005. Pages 301-312.

[29] Zimmermann O., Milinski S., Craes S., Oellermann F., Second
Generation Web Services-Oriented Architecture in Production in the
Finance Industry, Companion to the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA '04). ACM, 2004. Pages 283-289.

[30] Zimmermann O., Zdun U., Gschwind T., Leymann F., Combining
Pattern Languages and Architectural Decision Models into a
Comprehensive and Comprehensible Design Method. Proceedings of
IEEE WICSA 2008, IEEE Computer Society, 2008. Pages 157-166.

