
Service-Oriented Architecture and Business Process
Choreography in an Order Management Scenario:

Rationale, Concepts, Lessons Learned
Olaf Zimmermann
IBM Software Group

Gottlieb-Daimler-Strasse 12
68165 Mannheim, Germany

+49 171 970 6341
ozimmer@de.ibm.com

Vadim Doubrovski
IBM Global Services
2/90 Collins Street

Melbourne, Australia
+61 412 485 909

vdoubrov@au1.ibm.com

Jonas Grundler
IBM Software Group

Schönaicher Strasse 220
71032 Böblingen, Germany

+49 7031 164 914
It97grun@de.ibm.com

Kerard Hogg
IBM Global Services
2/90 Collins Street

Melbourne, Australia
+61 413 016 719

kerahogg@au1.ibm.com

ABSTRACT
Effective and affordable business-to-business process integration is
a key success factor in the telecommunications industry. A large
telecommunication wholesaler, supplying its services to more than
150 different service retailers, enhanced the process integration
capabilities of its core order management system through
wide-spread use of SOA, business process choreography and Web
services concepts. This core order management system processes
120 different complex order types.

On this project, challenging requirements such as complexity of
business process models and multi-channel accessibility turned out
to be true proof points for the applied SOA concepts, tools, and run-
time environments. To implement an automated and secured busi-
ness-to-business Web services channel and to introduce a process
choreography layer into a large existing application were two of the
key requirements that had to be addressed. The solution complies
with the Web Services Interoperability Basic Profile 1.0 and makes
use of executable business process models defined in the Business
Process Execution Language (BPEL).

This paper discusses the rationale behind the decision for SOA, pro-
cess choreography, and Web services, and gives an overview of the
BPEL-centric process choreography architecture. Furthermore, it
features lessons learned and best practices identified during design,
implementation, and rollout of the solution.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – domain-
specific architectures.

General Terms
Design, Standardization, Performance, Security.

Keywords
Application Server, B2B, Best Practices, BPEL, Business Process,
HTTP, J2EE, Order Management, Process Choreography, Process
Integration, Service-Oriented Architecture, SOAP, Telecommunica-
tions, Web Application, Web Services, WSDL, Workflow, XML.

1. INTRODUCTION
Our client is the wholesale subsidiary of one of the largest
telecommunications companies in the world. Naturally, a wholesaler
has to provide its services to other companies – in this case to

telecommunications service providers (retailers), which in turn offer
these services to their own customers.

In the telecommunications industry, in many countries deregulated
over the last decade, the virtual service provider landscape is rather
heterogeneous and subject to change. On the other hand, physical
networks are often still owned and operated by a few large
companies. The service procurement and order management
processes in this industry are inherently complex and long running;
many IT systems have to be interfaced and integrated with. This
combination of business dynamics and domain-specific functional
characteristics creates many challenges for IT solutions in the
telecommunications industry. There is a constantly increasing
pressure to reassemble existing solutions quickly on demand, and to
reduce systems development and operational costs.

Service-Oriented Architecture (SOA) [5] concepts such as Business
Process Choreography (BPC) [13], enterprise service bus [12] and
Web services technologies [25] are a recent response from the IT
industry to the challenges faced by the telecommunications and
other industries. Our client is an early adopter of these concepts for
enterprise-scale, mission-critical applications, leveraging them to
improve its core order management system. This paper features the
resulting SOA- and BPC-centric solution.

The remainder of the paper is structured in the following way:

• Section 2 introduces the business problems to be solved,
functional and nonfunctional requirements, as well as
technical constraints for the order management SOA.

• Section 3 features the architecture elements comprising
the SOA developed in response to these requirements,
along with their roles and responsibilities. Significant
aspects of the BPEL-based process layer and the B2B
Web services channel are detailed along the way.

• Subsequently, Section 4 takes a rear view mirror to the
SOA implementation project and discusses project results,
lessons learned and best practices identified.

• Finally, Section 5 concludes by summarizing thoughts
and providing an outlook to future work.

2. BUSINESS CONTEXT AND
REQUIREMENTS
This section outlines our client’s order management scenario and
related challenges to be addressed by the SOA- and BPC-centric
solution. The section goes on to list the most significant functional
and nonfunctional requirements to be addressed by the related

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

solution implementation project and to discuss why SOA and BPC
were seen as key solution elements.

2.1 The Telecommunications Wholesaler
The featured SOA project concerns a large telecommunications
wholesaler with more than 150 customers, ranging from many small
to a few very large customers. The wholesaler sells a full range of
telecommunication products to these customers.

The business model is based on the wholesaler owning the physical
network, cable and telephone exchanges. Customers include other
telecommunications companies supplementing their own network
infrastructure, and companies whose core business does not include
telecommunications, but who have a desire to bundle
telecommunication services with other products. The wholesaler is
responsible for provisioning and configuring telephone services
right up to the end user’s premises. Customers of the wholesaler are
expected to use the order management processes of the wholesaler
to connect, configure, or disconnect telephone services for end
users.

The wholesaler has a strategic imperative to drive down the cost of
operations by improving its ability to interact and collaborate
efficiently with its customers, and reducing manual processing and
rework. A range of interaction styles has to be offered to suit both
small and large customers, with the objective to deepen
organizational and process integration. Having achieved these goals,
the telecommunications wholesaler can use them as a differentiator
in an increasingly competitive market.

2.2 Order Management Challenges
The project described in this paper targeted the order management
for traditional Public Switched Telephone Network (PSTN)
products. Specifically, project scope included provisioning and
activation of new telephone services and catering for the moving of
telephone services to new addresses anywhere in the country.

The steps required to complete these processes are inherently
complex and involve interaction with eight existing legacy
applications providing core telecommunication functionality. The
same functionality has to be offered through two channels: an
interactive, browser-based application and a set of Web services for
automated business-to-business processing of requests.

The project enhanced an existing, complex application which inclu-
des about 3,000 Java classes. The application has been operational
for four years, servicing in excess of 5,000,000 provisioning orders
in that time, which were entered by up to 1,500 concurrent users.
The current application provides for over 250 products incorporated
in over 120 types of provisioning requests.

2.3 Key Functional Requirements
The enhanced version of the order management application has to
support two fundamental business processes that have to be serviced
through both the browser and the Web services channel:

1. Provide a new PSTN telephone service.
2. Move a PSTN telephone service to a new address.

Each process consists of many activities involving rather complex
validation rules to be supported by functions implemented in
multiple legacy applications. There is a strong focus on ensuring
validation completeness to minimize manual processing and rework.
Several validations, for example during address identification,

require a progressive filtering approach which requires an
interactive dialog.

Some activities involve the reservation of telecommunication re-
sources. These resources are valuable; the order management so-
lution therefore has to ensure that reservation of resources is only
attempted as part of a genuine process. Any reserved resources must
be released when the process fails to complete successfully in the
permitted time window.

The following stepwise description of the ‘Move a PSTN telephone
service to a new address’ process depicts these characteristics (note:
the ‘Provide a new PSTN telephone service’ process is a subset of
the ‘Move a PSTN telephone service to a new address’ process, not
requiring the first step):

1. Identify the service to be moved and its current location or
site address.

2. Identify the new address for the service. This has to be the
address as recognized by the systems that record
telecommunications plant and service information. Hence
the validation is complex, and search aids are required.

3. Assuming a recognized address is identified, the next step
is to search for transmission cable plant which exists at the
target address and could be reused for provisioning this
service. This is important for two reasons. The wholesaler
wants to maximize the revenue being generated from
cable plant. For the customer, it will cost less if existing
plant is reused. In some cases the plant may still be in use,
but its use may be scheduled for termination. In such
cases, the timeframe will have to be assessed.

4. Having identified a particular copper transmission path,
this intermediate result has to be recorded.

5. Determine the features of the service at the new address
(e.g., transmission of calling line identifier). This step
depends on a complex set of factors. Some features may
already exist from a service which previously used the
transmission path. Some features will be transferred from
the service at the old address. Some new features may be
requested in conjunction with the move.

6. Next, determine a phone number for the service at the
new address and reserve it. There are a number of
possibilities. If the new address is not serviced by the
same telephone exchange switch as the old one, the
customer has to choose a new telephone number.
Alternatively, where the address permits, the customer
may keep his/her existing telephone number. When
choosing a new telephone number, a list of numbers
available at the exchange must be supplied.

7. At this point in the process, enough information has been
obtained to determine whether the service can be provided
with or without a visit to the customer’s new premises. If
a visit is required, then a time must be negotiated which
suits both the customer and the field staff to be assigned to
the task. The chosen transmission path and its state,
service features required and geographic location are all
taken into account in determining the required tasks, how
much effort they will take, the field staff’s skills required,
and when the visit can be scheduled. When a visit is not
required, it may still be necessary to schedule tasks, but
generally these are subject to less constraints and do not
require negotiation.

8. In addition, it is common for business customers to have a
number of services and to request to relocate these to a

new address in a coordinated manner. In circumstances
where a visit to the customer’s premises is required, it is
advantageous to the wholesaler if only a single visit is
undertaken. This requires an appointment that satisfies
both the customer’s constraints for being present during a
site visit, and the constraints on the field staff required.

9. Lastly, the request to move the services from one address
to another and the reservation of the resources required to
complete the task is confirmed, allowing the commercial
transaction to proceed.

At any point, the process may be abandoned, for example if certain
timeout conditions occur. Business-level compensation is then
required to undo the reservation of resources.

This high-level description shows that, inherent to the problem
domain, the underlying process flow models can be rather complex.
As discussed in later sections of this paper, these functional
characteristics make the business process model challenging to
implement – no matter whether a SOA-/BPC-centric or a different
solution approach is chosen.

2.4 Key Nonfunctional Requirements
The order management solution supporting the two business
processes described in the previous section must be accessible both
over a private industry-sponsored network and the Internet.

Smaller customers require very low-cost entry points; hence a
browser-based application interface is required. On the other hand,
larger customers have a desire to leverage deeper process integration
options as made available by business-to-business Web services. A
third group of customers might want to employ ‘batch’ style
integration (as already noted, the customers of the wholesaler are in
turn telecommunication service providers serving end users).

Business volumes are approximately 20,000 ‘Provide a new PSTN
telephone service’ requests and 15,000 ‘Move a PSTN telephone
service to a new address’ requests per month. Given up to 20 steps
per process, and a peak hour load of 30% above average, this
equates to a peak load of about 4,550 steps executed per hour (based
on core business hours of ten hours per day, 20 days per month).
Initially, a process must be able to persist from first step to last for
three hours; however, this time will be extended to up to 24 hours in
the future.

The wholesaler’s customers are spread across a number of time
zones, operating 23 hours per day and seven days per week. The
solution design has to be able to handle 2,000 concurrent users
shared across the two channels (browser and Web services).
Depending on the software architecture on the customer side, the
number of concurrent users may not be a particularly relevant
measure; for example, a customer system serving many concurrent
end users may only use a single connection on the Web services
channel.

Each instance of a business process must operate independently of
others. Each process must be capable of managing the complex
interdependencies between the steps. Both successful and un-
successful processes must complete cleanly. Processes servicing the
Web services channel have to be able to recover their state following
an application server failure.

All messages on the public Internet must be encrypted. Each user
must prove its authenticity by presenting a digital certificate. Users
must be registered and authorized for each transaction type to be
used. Response times and transaction volumes must be monitored in

real time per transaction type and customer. Average response time
targets vary by transaction type, typically 3-5 seconds; 95% of the
transactions need to execute in 5-8 seconds.

2.5 Value of SOA and Business Process
Choreography in this Scenario
An analysis of the functional and nonfunctional requirements
outlined in Sections 2.3 and 2.4 led to identification of the following
business value of introducing SOA, BPC and Web services
technology:

• Increased automation and deeper process integration, as
made possible by the introduction of a choreography
component, lead to reduced manual effort and rework
both in the wholesaler and the customer processes.

• Process and business rule agility leads to product and
process changes being implemented faster and cheaper.
Legitimate use of telecommunication resources can be
ensured more easily, operational efficiency can be impro-
ved, and wastage reduced.

• A variety of interaction styles can be provided to custo-
mers of all sizes through the two channels, while still
ensuring consistent application of business rules.

On the technical level, the following benefits can be identified:

• Compensation is an attractive BPC feature. A two-phase
commit protocol cannot reasonably be applied to the
services provided by the legacy applications due to the
lifetime of the processes, timeout issues, and inherent lack
of support for transactional integrity control in most of the
backend applications.

• Reuse of shared application components is simplified. For
example, address checks are required for both business
processes, but implemented separately so far.

• Standardization allows replacing unsupported com-
ponents with commercial-off-the-shelf software, which
promises to simplify deployment and maintenance of the
order management application. A custom workflow en-
gine is an example, as well as the open source Web ser-
vices protocol engine and XML processor in use.

3. SOLUTION OUTLINE
This section outlines the solution to the business problems presented
in the previous section. First it describes the most fundamental
architectural requirements that stem from the business context and
requirements. It then lays out the solution and elaborates on the
purpose and characteristics of the solution components. The section
concludes with a more detailed look at some implementation
decisions taken.

3.1 Architectural Requirements
The functional and nonfunctional requirements outlined above lead
to the following major architectural requirements that the solution is
based on:

• The use of atomic and conversational Web services.
• Managing enterprise business resources
• Implementing a channel-agnostic architectural pattern.

The following sections outline each of these requirements in greater
detail.

3.1.1 Atomic and Conversational Web Services
The solution facilitates two types of Web services, atomic and
conversational, that are exposed as external interfaces.

An interface can be defined as atomic if a single invocation of its
operation triggers execution of a business process that runs until full
completion of a business transaction. The input message contains
the complete set of parameters necessary for the business process to
run end-to-end (Figure 1).

Activity 1 Activity 2 Activity n?

Input
Message

Output
Message

<<Web Service>>:
Operation1

Figure 1: Business process triggered by atomic Web service

The solution exposes two styles of atomic interfaces as external Web
services, both supporting the SOAP/HTTP protocol – synchronous
and asynchronous. The synchronous style assumes that upon receipt
of an HTTP request, the process in question completes in its entirety
and then returns a full result from the business process to the client
via an HTTP response. In contrast, Web service operations that use
the asynchronous style return just a result identifier in the immediate
HTTP response. It then becomes the client’s responsibility to invoke
another Web service operation after a while, providing the
previously supplied identifier to retrieve the complete result.

An interface is required to be conversational when it is impossible to
provide the complete set of the business process input parameters
upfront. In such a case, the input information has to be determined
incrementally, or gradually refined as part of the business process
execution. This type of communication is shown in Figure 2.

Activity 1 Activity 2 Activity n?

Input
Message

<<Web Service>>:
Operation1

Output
Message

Input
Message

Output
Message

Input
Message

Output
Message

<<Web Service>>:
Operation2

<<Web Service>>:
Operation n

Figure 2: Business process and conversational Web services

It must be noted that regardless of the conversational nature of the
communication with such Web services (Figure 2), the Web services
consumers on the client side always initiate the conversation, and
the server running the business processes always remains in
listening mode.

Web service operations participating in the conversational pattern
can also be synchronous and asynchronous. The implementation of
the order management scenario, however, makes use only of
synchronous conversational Web service operations.

Support of conversational Web services allows a wide variety of
architectural patterns to be implemented on the client side. It can
equally support both interactive human-driven clients as well as
fully automated system clients that do not communicate with human
users.
In the order management scenario for the telecommunication
wholesaler this means that for smaller retailers it is possible to have
a simple, perhaps Web-based, client that uses conversational Web
services’ responses to present the information to a human user who
makes necessary decisions. On the other hand, larger retailers,
striving to achieve higher level of automation can use more
sophisticated, automated solutions that use the same set of
conversational Web service operations. This provides for a wide
range of interaction styles as motivated in Section 2.1.

The use of atomic Web services represents the common invocation
pattern in traditional e-business architectures. It is well understood
and widely implemented. Sometimes, however, the nature of more
complex business processes dictates that the full set of process
parameters can only be refined during the process execution. This
calls for the use of the conversational Web service invocation
pattern, which is, so far, not widely researched, implemented and
described in the literature. Such a requirement exists for the order
management scenario (see high-level workflow description in
Section 2.3) and the rest of the paper is dedicated to the specifics of
application of this pattern.

3.1.2 Managing Enterprise Business Resources and
Use of Compensatory Actions
As motivated in Section 2.3, business processes may require the
reservation of certain business resources during their execution.
Business processes acquire such business resources from various
parts of the enterprise and mark the resources as reserved for their
exclusive use. If for some reason a business process does not
complete successfully, it must make sure that the resources
previously acquired are returned back to the pool of available
resources. This is achieved by using compensatory actions that are
defined for the relevant activities within the business process.

A single implementation of a compensatory action may have a
number of different triggering mechanisms. Some triggers may be
explicit and may relate to events for which explicit business rules
exist within the business process. Other triggers may be time-related
(i.e. temporal triggers) or may be related to certain exceptions
thrown within the process in question.

3.1.3 Channel-Agnostic Architectural Pattern
Requirements for many business applications specify that the system
must support a variety of communication channels. The solution
described in this paper is not an exception; it is required to support
both the traditional browser-based and a Web services access
channel. While the nature of the information that is communicated
through both channels is similar, the two channels have quite
different modalities and have distinctly different ways of handling
information.

According to architectural best practices, it is desirable to have a
single implementation of business processes below the presentation
layer, facilitating the work of both access channels. This ensures that
the business process logic is only implemented and tested once, and
maintained as a single code base supporting the two access chan-
nels.

This can be achieved by applying the channel-agnostic architecture
pattern [6], in which the business process implementation is fully
shielded from the presentation and modality details of each of the
used channels.

3.2 SOA and Process Choreography Usage
The fundamental architectural requirements outlined above can be
satisfied by a number of implementation options. Naturally, a
custom-coded solution always remains an option. However, if the
requirement for business agility and the ability to quickly adapt
business processes and create new ones from available components
is also taken into account, then the value proposition of adopting an
SOA-based approach becomes highly attractive.

If it is possible to identify reusable parts of the business process,
clearly define their interfaces and then use process choreography to
assemble the reusable activities into a process implementation, the
task of satisfying the channel-agnostic and conversational Web
services requirements becomes achievable. The existing order mana-
gement application has a history of using XML-based workflow
engines that aimed to provide process choreography capabilities (see
for example [7]). However, in the past it was difficult to define com-
ponent interfaces using self-describing, openly standardized
interface specifications which are now available, for instance Web
Services Description Language (WSDL) [18] and Business Process
Execution Language (BPEL) [4], [14] (to describe the workflow
itself).

A decision to use the SOA model augmented with an open standard-
based approach to business process specifications formed the
foundation of the architectural solution presented in the following
sections.

3.3 Component Model Overview
The solution presented in this section is based on the fundamental
requirements described in the sections before. It leverages the
Business Process Choreographer capabilities of the IBM
WebSphere Business Integration Server Foundation (WBISF), but
can be applicable to other Java 2 Enterprise Edition
(J2EE) application servers with business process
execution capabilities.

The solution’s component model is shown in
Figure 3. Business Process Engine (BPE) is a
logical representative of the BPC functionality in
WBISF, residing at the core of the solution’s
component model. BPE implements the Business
Process Layer of the model, facilitating the
execution of business processes.

Such business processes are defined by business
process specifications comprising process flows,
activities and compensations. Process speci-
fications are expressed in BPEL. They are created
for the Business Process Choreographer compo-
nent of WBISF, using the WebSphere Application
Developer Integration Edition (WSADIE) tooling
environment including a BPEL editor. Once saved
and published, BPEL specifications can be directly
instantiated and executed within the BPE container
available in WBISF.

Above the business process layer reside the
Presentation Layer and the Channel Controller

Layer, jointly accommodating channel-specific components. This
approach allows for retaining all the channel-specific elements of
the architecture at the Presentation Layer leaving the Business
Process Layer totally channel-independent. This addresses the
requirement for channel-agnostic implementation of business
processes, which means that all communications between the two
layers are implemented via exactly the same interfaces regardless of
the channel. In other words, the business process layer does not use
any channel-specific parameters as part of its logic.

The implementation of this principle is achieved by specifying
interface contracts between the Presentation Layer and the business
processes as Web services exposed only internally to the solution.
These internal Web services are formally defined using WSDL
specifications and can be invoked using the Web Services
Invocation Framework (WSIF) [20] that supports bindings other
than SOAP/HTTP. These well-defined, self-describing WSDL inter-
faces decouple the Process Layer from the two channels comprising
the Presentation Layer, therefore providing a channel-neutral
mechanism for invoking business processes.

Business process specifications are composed of sequences of
activities that together achieve the desired outcome of the business
process in question. Each activity is usually specified as a “black
box” at the business process level. Therefore such activities are
referred to as Activity Stubs, while the components that the stubs call
are referred to as Activity Implementations. Each Activity Imple-
mentation also has a well-defined interface that is exposed internally
using the Business Service Façade (BSF) pattern [1]. Similarly, each
BSF exposes its interface as an internal Web service described in
WSDL that can be invoked via WSIF.

Each activity represents a step in a business process and has a well-
defined interface specified by its WSDL operation contract. A group
of such Web service operations that can be invoked in a sequence
represents the conversational Web service pattern (see Figure 2).

The use of BPEL for describing business process specifications
allows for clear understanding as to what activities are involved in

Business
Process
Layer

Channel
Controller
Layer

Business
Services
Layer

Screen1 Screen2

Presen-
tation
Layer

Browser Channel Web Services Channel

Application
Services
Layer

Business Objects

Core
Systems
Layer

Business
Objects

Core
System 1

BS1 BSn

AS1 ASn

. other

? WS Façades

Activity Stub 1 Activity Stub n?

BSF1 BSF n

Client Client

Value
Object

Value
ObjectProcess

Activity
Layer

WSDLWSDL

WSDLWSDL

Activity
Implementation 1

Activity
Implementation n

Core
System n

Business Process Engine

SOAP
Engine

Figure 3: Component model that supports business process execution

each process and what transitions of control are possible between
activities. Activities that are involved in reserving enterprise busi-
ness resources can be marked and made visible from the business
process specification. It is possible then to create compensatory
actions that can be invoked from various stages of the business
process if the process is to be terminated prematurely and the
acquired business resources must be released.

Activity implementations that can be invoked through their BSFs
can make use of other services, either Business Services, if a
function understood by the business is implemented, or Application
Services, for internal application functionality.

The fundamental principles of SOA assume that not only pieces of
reusable functionality can be exposed as services (Web services
described by WSDLs in this case), but also, in turn, such services
can invoke other services as part of their business function imple-
mentation.

3.4 Business Process Layer
The implementation of the Business Process Layer is based on the
BPE that instantiates and executes business processes. Within this
layer, business processes are defined as long-running processes (or
macro processes). This means that the full process state, consisting
of BPEL variables, is maintained by the BPE in a persistent manner
– all parts of the business process context are stored in a database
(usually once per process activity execution) and can be restored at a
later stage. A direct implication of this is that business processes can
“live” in the system for hours and days (or even weeks and months)
which is part of the application’s business requirements as stated in
Section 2.4.

In conversational Web service scenarios, there may be substantial
time between Web services operation invocations, which requires
the use of long-running business processes. Long-running business
processes also allow business process instances to survive server
reboot.

3.5 Presentation Layer and Channel
Controller Layer
The Presentation Layer and the Channel Controllers support the
different modalities of the two channels and mediate invocations of
the standardized interfaces at the Business Process Layer.

Such mediation is relatively simple for the Web Services Channel,
as the externally exposed WSDL interfaces of the conversational
Web services are defined in close alignment with the internal
WSDLs defined for each activity stub. There are only very few
simple transformations that are implemented at the SOAP Engine
and Web Service Façade Level.

Mediation is more complex for the controller in the Browser Chan-
nel, particularly if the user interface follows a page flow-oriented
approach. Not only is the controller required to invoke the Business
Process Layer’s interface during request processing, it also has to
maintain dialog state (for instance when more than one screen cor-
responds to a single process activity invocation to provide a rich
user experience), support moving forward and backward through
screens as required, handle validation errors, report them to the user
and allow for repeatable data input.

3.6 Process Activity Layer
The Process Activity Layer provides Activity Implementations for
each Activity Stub at the Business Process Layer. There is a funda-

mental architectural assumption that each activity implementation is
short-lived. This differentiates activity implementations (that can
also be viewed as business sub-processes) from the long-running
processes at the Business Process layer.

The short-lived characteristic of activity implementations is dictated
by the very nature of an external Web service operation implemen-
ted as an inherently synchronous SOAP over HTTP call. If the in
message of a Web service operation is delivered as a HTTP request,
the out (or fault) message must be delivered as the HTTP response
to this request, otherwise the Web service operation in question will
result in a time out. Therefore the execution of an activity
implementation, triggered by the Process Layer, and occurring
between the arrival of the HTTP request and formation of the HTTP
response, must be short-lived.

Each Activity Implementation is also exposed (i.e. to the Process
Layer) via a WSDL interface based on the signature of its BSF.
BSFs represent Activity Implementations designed as stateless
session beans. This defines another architectural principle of the
solution that requires Activity Implementations not to keep state.
The only layer within the architecture that keeps process state is the
Business Process Layer. All data elements that are required for
Activity Implementations to successfully perform their tasks are
passed in (and out) via Value Objects (see Figure 3). Naturally, the
structure of each Value Object is aligned with the corresponding
BSF’s signature reflected in the corresponding WSDL and XML
Schema Definition (XSD).

3.7 Business and Application Services
Not only are parts of the system’s architecture at the Business
Process Layer and the Web Services Channel exposed as services,
but a set of reusable components was identified as part of the design
stage for the lower layer activity implementations. Such reusable
components are defined as shared services within the system’s
architecture. They can belong to one of two distinct groups –
Business and Application Services.

The difference between the two is important. Application Services
can be defined as reusable components or pieces of reusable
business logic that can be used and, more importantly, only make
sense within the given application.

On the contrary, Business Services can be defined as reusable
components or reusable pieces of business functionality that have
initial affinity with the application, but largely can be used and make
sense within the wider enterprise. An example of a Business Service
is a ListAvailableNumbers() service briefly introduced in Step 6
within Section 2.3. It provides a list of telephone numbers available
for allocation at a given telephone exchange.

An elegant way to define services is via WSDL interfaces. The
immediate implication of this principle for Business Services is that
their WSDL definitions must include only primitive fundamental
data types or types that form part of the global enterprise’s XSD
library. In the future, an enterprise-wide service registry (e.g. UDDI
[17]) possibly could assist in adoption and proliferation of the
important Business Services.

Each such service with a well-defined interface represents a poten-
tially reusable component. Ideally, such components could be
deployed separately as separate deployment units (especially in the
case of Business Services) and could be invoked via WSIF. It is
worth noting that due to the availability of multiple protocol
bindings in WSIF, the existence of a WSDL contract does not

mandate the usage of SOAP/HTTP as a transport protocol at
runtime.

3.8 Conclusions
The previous sections have shown that in order to satisfy the major
architectural requirements and achieve greater business process
agility, an SOA-based approach with process choreography is
perfectly valid for the order entry management scenario introduced
in Section 2.

This approach is based on a set of reusable process components
using well-defined internal Web services, with self-describing
WSDL interfaces, connected together by business process
specifications defined in BPEL. Defining clear, consistent internal
Web service interfaces to a single business process implementation
achieves complete channel independence for both the Web browser
and the Web services channel.

4. PROJECT RESULTS AND LESSONS
LEARNED
Following the description why and how SOA and BPC concepts
were leveraged in a telecommunications order management
scenario, this section reflects on the results of the project delivery
phase and good design practices harvested from it, starting with the
overall results and then investigating technical details, project
approach, and lessons learned.

4.1 Project Results
In response to the advanced workflow requirements described in
Section 2, a BPEL- and Web services-centric SOA was designed,
which can be accessed via a browser application as well as a Web
services channel. The solution successfully went into production in
April 2005. In the first week of operation in excess of 10,000 BPEL
process instances were executed and the throughput continues to
grow.

Throughout the first eight weeks of production operation, the
solution was stable and exceeded both response time and reliability
targets. Performance has improved in comparison to previous, non-
SOA releases.

With regards to the maturity of the core Web services stack
consisting of XML, SOAP, and WSDL, we can confirm the same
positive experience as reported in an OOPLSA 2004 practitioner
report on a project in the finance industry [24].

4.1.1 Process Modeling Aspects
We successfully implemented the two business processes in the
scenario, ‘Move a PSTN telephone service to a new address’ and
‘Provide a new PSTN telephone service’. These two processes are
implemented as subprocesses of a generic ‘Request’ process.

All three processes approximately have the same size and
complexity. There are more than 300 BPEL activities such as in-
voke, receive, reply, and assign, as well as Java snippets within each
process model. Over 70 variables and ten while loops are defined.
These while loops and the use of sequence and flow constructs re-
quired the introduction of 15 nested scopes. More than 30 Web
service calls (invoke activities) appear in each of the three process
models; more than 35 value objects and XSDs are used.

Due to significant upfront design work on BPEL process model
patterns, XML namespace conventions, approach to exception

handling, and other key design issues, the development of these
processes progressed rather smoothly. The scenario to be implemen-
ted is complex and challenging (see Section 2); therefore, thorough
preparation was required to contain the related risks and keep the
problems encountered to a minimum.

As already mentioned in Section 3, we used a commercial J2EE
application server and related tooling as our BPEL runtime and
development environment. WSADIE, our Eclipse-based Integrated
Development Environment (IDE), let us connect Web services to
the BPEL layer rapidly, and allowed to generate helper classes for
various XML-based artifacts, as well as Web services client proxies
and server stubs. All required tools are integrated in the WSADIE
platform; Web services and BPEL development therefore was a one-
stop shopping experience.

With this approach, the vision of being able to rapidly develop and
change business process rules and deploy changes at low cost is
tantalizingly close. However, without additional tooling, just-in-time
process deployment initiated on the business analyst level cannot
easily be accomplished yet (at least not in an automated fashion).
Furthermore, round-tripping remains a manual task.

In contrast, the quest for flexibility and business-level agility is an
important element of the SOA value proposition (as outlined in
Section 2). An apparent conclusion from this project is that an IDE
and J2EE container hosting a BPEL engine alone cannot enable
business analysts, let alone business users, to modify business
process execution on the fly in response to an external market force,
opportunity or threat. Additional tools and further development life
cycle optimizations are therefore required to accomplish this vision,
for example BPEL export and import capabilities in the business
modeling tools used by the business analysts and domain experts.

4.1.2 Project Approach
Key to success was to schedule a development-level Proof-of-
Concept (PoC) early in the project along with the high-level solution
outline work. The PoC included a fit-gap analysis with regard to
functional and nonfunctional requirements, current IT environment
and SOA concepts, and was highly valuable in terms of training the
project team on BPEL and Web services.

During the development phases of the project, we employed an
iterative and incremental development style adopting many
principles from the Manifesto for Agile Software Development [3],
for example continuous delivery and collaboration. Before we
initiated project activities such as BPEL process flow modeling,
definition of WSDL contracts, and coding of key Java artifacts, we
invested in an analysis phase involving several fact-to-face
workshops within the architecture, development and system admini-
stration teams. Topics included basic requirements analysis,
assessment of existing Java code and Web services interfaces,
existing deployment cycles, maintenance and operations. It turned
out that the decision to spend time on these analysis and
coordination activities paid dividends, speeding up the ensuing
BPEL and Java development significantly.

In summary, two of the most important general lessons learned on,
and reinforced by, this project are to identify possible areas of
concerns early and to define appropriate risk mitigation strategies
before kicking off any premature implementation work.

4.2 Lessons Learned
Due to the size and complexity of this project, many lessons learned
about large-scale usage of SOA and BPEL originate from it. This
section reflects both on general development challenges and on
BPEL technology-related issues.

Backward navigation and event-driven processes are cum-
bersome to model. BPEL is a Web services composition language,
and vendor implementations typically add workflow capabilities, for
example interactions with human users.

According to the experience gained on this project, the current
BPEL specification has a fundamental limitation: activities are
executed once in a defined sequence – there is no inherent modeling
construct for representing an event-driven process in BPEL.
Moreover, there is no notion of repeating a failed activity. This
became apparent when the following process requirements had to be
modelled (compare with general workflow description in Section 2):

1. The processes to be modeled in the order management
scenario have to be tightly integrated with the Browser
Channel – hence, a step back functionality had to be
implemented in BPEL (resembling the browser’s back
button).

2. A typical scenario is that the business process validates a
user’s input. If the validation fails, the user must repeat
this step.

3. While the user is navigating through the business process,
he/she can re-enter the business process at a certain, pre-
determined entry point (and drop current inputs).

BPEL does not have a built-in mechanism to model these three
requirements. Therefore, complex while loops, flows and sequences
had to be used – more than 15 nested layers of sequences, flows and
while loops were required.

A modeling approach based on event-driven finite state machines
would be worth considering for this and many other scenarios.

Conversational process invocation models must be exposed on
the client interface. BPEL processes interact with other services
through partner links; either the BPEL processes or their clients can
initiate such interactions (invoke versus receive activities). In
conversational processes like those two implemented in this project,
several receive activities are defined. Consequently, a conversational
BPEL process exposes multiple interdependent Web service
operations; related pre- and post-conditions for successful invocati-
on of the receive operations exist. It is a challenge to communicate
to partners as to which operations on the BPEL process are available
at a given point in time. This challenge can be addressed partially by
modeling the BPEL in such a way that the order of events is defined
intuitively, and by annotating the WSDL definition of the process
interface appropriately.

With regards to the human user interface for conversational pro-
cesses, the time the BPEL engine needs to navigate from one step to
the next has to be considered. Moreover, synchronization of the
human user interface with the BPEL engine is a considerable
challenge, as a conversational process requires a number of user
interactions to be completed over its lifecycle. Two styles of human
user interfaces for conversational processes are commonly used,
work lists and page flows.

In the work list approach to dealing with multiple user interactions,
work items representing interactive steps in a conversational BPEL
process are created for each ongoing process activity step. The user

is presented with a single, typically domain-independent work list,
from which he/she selects a work item to work on.

The page flow approach often is perceived to be more user-friendly.
An interface is provided that navigates to a specific input page for a
particular process step following a completed one. This way a user
can navigate through a business process step-by-step, without
having to choose items from a generic work list.

Page flow-based user interfaces are more complex to synchronize
with the process layer than work list-based ones. If the page flow-
based approach is chosen, the synchronization of the user interface
and the BPEL engine is a major challenge, introducing mutual
dependencies between the user interface and the BPEL process.
These dependencies must be designed explicitly.

Many BPEL-specific design decisions have to be taken. BPEL
offers a variety of possible implementation alternatives for common
design patterns. To ensure architectural and implementation-level
consistency, a lot of fine-grained design decisions have to be taken
in addition to the overall architectural decisions, for example
regarding layering. Examples include interoperability and other
protocol issues, BPEL and WSDL modeling and mapping details
(e.g. structure of partner links), guidelines for usage of BPEL
variables and correlation sets, and error handling strategy (e.g.
SOAP fault elements versus Java exceptions).

A pragmatic approach leveraging existing experience and assets
quickly led to satisfying solutions in all mentioned areas. For in-
stance, we could have implemented all BPEL variable mappings in
pure BPEL, that is, with XPath [22] or XSLT [23]. As strong skills
in this area had not been built previously, we decided to use basic
BPEL assign activities for simple mappings, and Java Snippets, a
nonstandard implementation-level extension to the BPEL
specification, for complicated mappings.

Multiple technology stacks are involved. Elements of risk likely to
be perceived on SOA/BPC projects are a rather steep learning curve
and initially a negative impact on developer productivity, originated
by the fact that it is quite difficult for a single practitioner to master
all involved technologies such as BPEL, Web services (WSDL and
SOAP at a minimum), XML, and J2EE in parallel.

On this project, we had invested in building deep skills on develop-
ment level right from the beginning. We ensured that selected
members of the team were familiar with the technical imple-
mentation of all application layers. This investment in broad and
deep education turned out to be very valuable, particularly during
integration testing and defect fixing.

There is an impact on deployment and build cycle. During the
early test phases of the project, the team was confronted with a
deployment and build cycle that consumed more time than that on
previous project stages. Enabling BPEL support increased the
footprint of the involved J2EE tools and runtimes (in terms of
memory requirements, class path management, etc.), as many
additional artifacts had to be created, deployed, and maintained. The
resulting overhead slowed down the testing and defect fixing
process initially.

Analysis and refactoring of the deployment and build process
decreased the consumed time to 30% of the original time needed.
An additional pre-build cycle on a dedicated workstation helped to
identify build process issues and ensured a basic level of quality
before deployment to the actual test system. We also parallelized
steps like tagging in the version control system and the early build

stages, and assigned build and deployment activities to a specifically
trained team member. Further advice regarding deployment process
improvements is as follows:

• Avoid storing design artifacts redundantly; create modules
and dependencies such that an artifact only exists once
(e.g. XSD for a business object).

• Sort artifacts by type and by meaning (facilitated by
naming conventions for packages and namespaces), and
share application server configurations within teams.

• Define role-specific Enterprise Archive (EAR) assemblies
for the different types of developers, e.g. BPEL develo-
pers, JSP developers, and Enterprise Java Bean (EJB)
developers.

Following these general considerations, project-specific build path
analysis, and insight into product tuning opportunities made it
possible to bring the speed of the build and deployment up to an
acceptable level.

Unit, integration and load test drivers have to be defined. At the
very beginning of the project, we built a test application that
exposed all key process characteristics. The test application was
developed using the same data structures, input/output volumes,
protocols, and communication patterns as they were to be found in
the target application.

This test application was used to assess system performance at a
rather early stage. Furthermore, it allowed us to identify potential
problem areas in the application and the BPEL engine before we
actually started testing our target processes.

At all stages, we tested our business processes using JUnitEE [11].
WSADIE generates Java proxies for interaction with the business
processes. These SOAP client proxies made it simple to create test
cases for the communication with the BPEL processes. The
generated proxies were used in JUnitEE classes to drive the BPEL
processes without requiring a Web client or other external systems.
This approach worked very well.

During the implementation of the business processes, the test cases
were created in parallel by different developers – as a side effect,
these test cases evolved with the evolution of the business processes.
We saved a significant amount of time with this approach
(compared to a manual approach to testing).

As soon as the real business process implementations were close to
being ready for production deployment, we started load testing with
them rather than the test application, stubbing out the Web services
invocations. The JUnitEE test cases we had developed during the
time of process development could be easily re-organized into test
servlets driven by load testing tools.

4.3 BPEL Best Practices
Due to its scope, this project was ideal to mine best practices in
almost all stages of the project lifecycle. This section presents only
the most relevant and valuable ones.

SOA and BPEL must provide real value to the business. A best
practice that cannot be overstated is that before any detailed
technology decisions can be made, it must be proven that an
innovative approach (here: SOA, Web services and BPEL usage) is
applicable and provides real business value from a project
stakeholder perspective. There simply is no way to justify the use of
technology for its own sake.

Section 2.5 of this paper justified the rationale of the usage of SOA
and BPC in the order management scenario.

Process choreography support has to be positioned carefully in
the overall architecture. Once a decision has been made for BPEL
(and Web services, if not existing already), one has to carefully
decide where and how BPEL processes are introduced.

A first key decision is whether a process layer should be introduced
explicitly, or whether BPEL support is viewed just as yet another
logical component that provides higher-level Web services. It also
has to be decided which service consumer components commu-
nicate with a business process, and which protocol is used. There are
long- and short-running business processes, which expose
fundamentally different transactional semantics and quality-of-
service characteristics. Further architectural decisions are related to
granularity of the Web services that are invoked from the business
process, as well as the granularity of the Web service interface that
is exposed by the business process itself.

Section 3 of this paper discussed a subset of these architectural
decisions in the context of the development of the telecommuni-
cations order management SOA.

Not everything is a BPEL process. BPEL and Web services are
highly attractive concepts at present receiving much attention in in-
dustry and academia. BPEL is an XML language with operational
semantics; its control constructs are comparable to those found in
programming languages such as Java, C++, or C# (loops,
conditions, and fault handlers just being three examples).

These characteristics make it difficult to identify the best use of
these technologies from a business and an architectural perspective.
Certainly not each and every logical building block of a solution has
to be implemented as a BPEL flow just because technology and
tools are available and capable of doing so.

Some guidelines that help identifying scoping the usage of BPEL on
a project are as follows (also see discussion in Section 3):

• BPEL usage should focus on turning discrete units of
business function into a business process, rather than on
micro-level algorithms and direct manipulations of per-
sistent data structures. Such algorithms and database
access functions should reside in lower level layers of the
overall architecture and be exposed through internal
WSDL interfaces for consumption in business process
flows.

• Presentation layer dialogs are different from business
processes (page vs. activity flows) – intermediate steps
that simply capture information from a user are best
reflected in dialog control frameworks such as Apache
Struts [2] or Java Server Faces (JSF) [10] applications.

• Even if a solution exposes a process layer, atomic (non-
conversational) Web services might co-exist with this
process layer. Depending on the functional requirements
to the solution, it is still valid to make direct calls to such
atomic services. Facilitating reuse, such atomic Web
services can also be invoked from the BPEL process
layer, serving as activity implementations.

Consciously decide for or against subflow usage. Frequently,
discussions about an actual BPEL design include the usage of
subflows. From an SOA perspective, a subflow represents a com-
ponent or module of a higher-level process service. We can also use

subflows to further divide large processes – theoretically, a very
modular BPEL design can be created with such an approach.

On the BPEL implementation level, subprocesses introduce yet
another layer of abstraction. Placing certain functionality into a
subflow might decrease performance due to increased component
initialization needs and related communication overhead. On the
other hand, subflows can be a method to parallelize process
development tasks, decrease the complexity of a single process and
allow employing a fine-grained unit testing strategy.

Before introducing multiple layers of subflows, one has to assess the
tradeoffs and implications such as impact on performance,
complexity of the overall process model, as well as deployment and
maintenance issues (more artifacts have to be managed).

In our scenario, usage of subflows is limited to modeling the
relationship between the generic Request process and the two
specific instantiations ‘Provide a new PSTN telephone service’ and
‘Move a PSTN telephone service to a new address’.

A “pure BPEL” principle should be followed – if feasible.
Typically, a solution has to meet many different non-functional re-
quirements, including (but not limited to) being compliant to
standards, adhering to a strict layering scheme and writing
understandable and maintainable code.

Many of these goals can be competing even for non-BPEL projects.
From an application architect’s perspective, a business process
implementation in pure BPEL is best – no proprietary, but only
standardized language features should be used. However, as the
BPEL standardization is not finalized at the time of writing, it
sometimes may be necessary to use vendor extensions such as staff
resolution and staff activities for human interaction support.

Not using extensions for the sake of standards compliance can cause
extra development efforts and have a negative impact on the
nonfunctional characteristics of the solution (if a proprietary, but
optimized solution exists). For instance, from a runtime performance
perspective, using a Java snippet in a BPEL process to invoke an
EJB is faster than wrapping the EJB in a Web service and then
invoking it via an activity that calls the EJB Web service. On the
other hand, it is desirable to implement processes in a fashion that is
compliant with the BPEL specification.

These considerations lead to the general advice to prioritize
conflicting requirements, particularly nonfunctional ones.

Business process data placement has to be managed. Often, an
area of concern is the management of state variables that are bound
to a business process. Issues similar to those arising when using
HTTP session objects in a J2EE Web container can occur, for
example related to scalability, fault tolerance, and performance.
BPEL variables are global within a process, which can possibly lead
to undesired side effects in case several activities read and update
the same variable.

Good practice is to keep the amount of data that is passed to and
kept within business processes as limited as possible, as BPEL
engines hosting long-running business processes typically store this
data in a process database. Therefore, we recommend limiting the
data held within business processes to a minimum. However, it is
not always worth introducing costly changes to an existing design
just to restrict the size of such data. In our project, the overall size of
data has been calculated to be up to 2.5 megabytes, spread over
more than 70 variables per process. Compared with HTTP session

objects, this is huge – but, as this data is just stored in the database,
it does not always affect performance and memory allocations; data
is uploaded to memory only when required.

General alternatives to state management in a process layer are
pushing this responsibility out to the client, or using a dedicated
database shared by process and service components. A conscious
architectural decision for one (and only one) of these alternatives
should be taken.

Artifact dependency and asset management is required. In a
BPEL project, a number of artifacts have to be managed – for
example those outlined in Figure 4.

Figure 4: BPEL project artifacts and dependencies

Many of these artifacts depend on each other, and there are
dependencies from and to the code generators in use (e.g. Value
Object generators taking XSD documents as input). Versioning of
process definitions (and their instances) is another key issue.

We recommend keeping the number of redundant artifacts (e.g. Java
representations of Web services) to a minimum. Setting up a
common repository keeping those artifacts is imperative. Naming
conventions should be defined before development starts – this
affects BPEL and WSDL element names (and package structures or
positions within the file system) of generated components like
client-side Web service invocation proxies.

5. CONCLUSIONS AND OUTLOOK
In this paper, we described how we leveraged SOA concepts,
BPC/BPEL and Web services technologies to implement the next
generation of a large multi-channel order management application
for a telecommunication wholesaler. Deeper integration and
flexibility of the process chains between the wholesaler and its
customers, as well as cost savings originating from a higher level of
automation, business rule validation, and service reuse were among
the anticipated business benefits that suggested a BPEL-centric
SOA for this scenario. Technical benefits included separation of
concerns through strict layering, improved resource management via
compensation and runtime reuse of shared application functionality
made available as business and application services.

Overall, our experience with the foundational Web services
technologies such as WSDL and SOAP was very positive and
resembled that gained on previous projects. A fully automated,
secure B2B Web services channel has been running in production
successfully for about two years now; service consumer applications
implemented in a variety of programming languages have access to
the order management system. Seamless interoperability is ensured
by the WS-I Basic Profile [19].

Our experience with still evolving SOA concepts such as BPEL is
twofold. The value proposition of business process choreography
with BPEL is promising and presents a perfect match for this rather
complex inter-company process integration scenario. We
successfully implemented two key business processes; the solution
has been running smoothly in production since April 2005, meeting
all functional and nonfunctional requirements.

However, according to our experience technology and implemen-
tations still have some way to go before all promises can be fulfilled.
The first generation of BPEL tools exposes many technical details to
the developer, and the step from business analysis to development is
semi-manual or manual. Cross-discipline model exchange and code
generation capabilities are needed to align business and IT more
closely; second-generation tools are only beginning to address these
requirements.

We outlined the following key findings regarding architectural
positioning and development process:

• Event-driven process modeling and backward navigation
between process activities is not well-supported; BPEL
process modeling cannot easily be based on a finite state
machine metaphor.

• Conversational process invocation models must be
exposed on the client interface; human user interfaces
providing page flows are more complex to synchronize
with the process layer than work list-based ones.

• Many BPEL-specific design decisions have to be taken.
• Many technology stacks are involved, which leads to

significant training efforts.
• There is an impact on the development and test process

(in terms of turnaround times and resource requirements),
which can be countered through refactoring.

• The test strategy has to account for BPEL usage; unit,
integration, and load test drivers have to be defined with
BPEL- and service-oriented design in mind.

Just like on any other nontrivial enterprise application development
project, a structured architectural decision making process has to be
employed; in addition to general decisions such as overall compo-
nent model, platform selection, and capacity planning, many SOA-
and BPEL-specific decisions have to be taken. These decisions
include the strategy for state and transaction management, as well as
exception handling in the process layer.

Many good practices can already be identified, including:

• Not every component qualifies to be implemented as a
BPEL process (macro- vs. micro-level programming);
BPEL should not be used for implementing something
that is not a business process.

• Conscious use of the subflow concept is recommended.
• A pure BPEL philosophy should be followed, usage of

vendor extensions reduced to areas not yet covered by the
BPEL specification (e.g. human user activities).

• Business process data placement has to be managed.
• Artifact dependency and asset management is required.

Many of the issues we encountered and worked around in this
project are inherent to the complexity of the problem domain;
however, several of those described in this paper can be regarded as
limitations of the BPEL technology presently available. BPEL
therefore has to be assessed as not fully mature yet, even though it
created a lot of value on this project already.

For the future, we consider pursuing several additional steps and
directions. First, we intend to compare our project results and
lessons learned with those from other large-scale BPEL projects,
with the intention to harden them into true best practices.

Regarding the telecommunications wholesaler scenario, more order
management processes can be supported by BPEL, and several other
application domains can benefit from BPC technology in the future.
It is intended to evaluate these opportunities after having performed
a retrospective technology value assessment for this project.

As a separate project, work is underway to define a wholesaler–wide
enterprise SOA model; we also investigate more formal service
modeling and asset management approaches to facilitate successful
reuse of business services.

6. ACKNOWLEDGMENTS
This paper is the result of a joint project and community effort. In
particular, we would like to recognize the following individuals (in
alphabetical order): Tony Altamura, Michael Bader, Adrian Berry,
Peter Bittner, Neil Buckingham, Gary Chang, Peter Chilcott, Rohan
Cluning, Steve Davies, Daren Deppeler, Mark Endrei, Marc
Fiammante, Dagmar Fink, David McGorrery, Justin Graham,
Meltem Haylaz, Jeffrey Heyward, Satish Kanchanna, Thomas
Kasemir, Matthias Kloppmann, Neil Mulholland, Wendy Neave,
Ying Ni, Spiro Paleologoudias, Bobby Papadopoulos, Gerhard
Pfau, Mandeep Sahni, Tabet Tabet, and Kenneth Worland.

7. REFERENCES
[1] Alur, D., Crupi, J., Malks, D. Core J2EEtm Patterns – Best

Practices and Design Strategies, Prentice Hall, 2003.
[2] Apache Struts, http://struts.apache.org
[3] Beck K. et al, Manifesto for Agile Software Development,

http://agilemanifesto.org
[4] Business Process Execution Language for Web Services

Version 1.1, available from http://www.ibm.com/
developerworks/library/specification/ws-bpel

[5] Component Based Development and Integration (CBDI),
Insight for Web Service & Software Component Practice,
http://www.cbdiforum.com

[6] Doubrovski V., Channel-Agnostic Architecture Pattern for e-
Business Applications. Proc. of APITAC 2004, Kuala Lumpur,
IBM, 2004.

[7] Doubrovski V., Towards Formal Specification of Client-Server
Interactions for a Wide Range of Internet Applications. Proc.
of WI2001, Japan, Oct 2001, Springer-Verlag, 2001.

[8] Ferguson, D. F., Storey T., Lovering B., Shewchuk, J., Secure,
Reliable, Transacted Web Services, IBM and Microsoft 2003,
http://www.ibm.com/developerworks/ webservices/library/ws-
securtrans

[9] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns
– Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995

[10] Java Server Faces,
http://java.sun.com/j2ee/javaserverfaces/index.jsp

[11] JUnitEE, http://www.junitee.org

[12] Keen M. et al, Patterns: Implementing an SOA using an ESB,
IBM Redbook 2004

[13] Leymann F., Roller D., Schmidt, M. T., Web Services and
Business Process Management, IBM Systems Journal, Vol. 41,
No 2, 2002

[14] OASIS Web Services Business Process Execution Language
(WSBPEL), http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel

[15] Service-Oriented Architecture and Web Services, IBM,
http://www.ibm.com/services/us/imc/html/soa.html

[16] Simple Object Access Protocol (SOAP) 1.1, W3C Note 08
May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-
20000508

[17] Universal Description, Discovery and Integration (UDDI),
http.//www.uddi.org

[18] Web Services Description Language (WSDL), W3C Note,
http://www.w3.org/TR/wsdl

[19] Web Services Interoperability Initiative (WS-I),
http://www.ws-i.org

[20] Web Services Invocation Framework (WSIF),
http://ws.apache.org/wsif

[21] Workflow Patterns, http://www.workflowpatterns.com
[22] XPath, http://www.w3.org/TR/xpath
[23] XSLT, http://www.w3.org/TR/xslt
[24] Zimmermann O., Milinski M., Craes M., Oellermann F.,

Second Generation Web Services-Oriented Architecture in
Production in the Finance Industry, OOPSLA Practitioner
Report, 2004

[25] Zimmermann O., Tomlinson M., Peuser S., Perspectives on
Web Services – Applying SOAP, WSDL and UDDI to Real-
World Projects, Springer-Verlag, 2003.

