
Second Generation Web Services-Oriented Architecture in
Production in the Finance Industry

Olaf Zimmermann
Sven Milinski

IBM Software Group, IBM Global Services
Gottlieb-Daimler-Strasse 12
68165 Mannheim, Germany

+49 171 970 6341
ozimmer@de.ibm.com
milinski@de.ibm.com

Michael Craes
Frank Oellermann

Sparkassen Informatik GmbH & Co. KG
Nevinghoff 25

48147 Münster, Germany
+49 251 288 3456

michael.craes@sparkassen-informatik.de
frank.oellermann@sparkassen-informatik.de

ABSTRACT
Effective and affordable business process integration is a key
concern in the finance industry. A large German joint-use centre,
supplying services to 237 individual savings banks, enhanced the
integration capabilities of its core banking system, consisting of
more than 500 complex functions, through aggressive use of Web
services.

Advanced requirements such as heterogeneous client environ-
ment, sub-second response times, 300% traffic growth, and inter-
face complexity did challenge today's Web services implementa-
tions. To achieve true interoperability between Microsoft (MS)
Office™/.NET™ and Java™, and to implement more than 500
Web service providers in a short time frame were two of the most
important issues that had to be solved. The current, second
release of this solution complies with the Web Services Inter-
operability (WS-I) Basic Profile 1.0. Leveraging the Basic Profile
reduced the development and testing efforts significantly.

This report discusses the rationale behind the decision for Web
services, and gives an architectural overview of the integration
approach. Furthermore, it features the lessons learned and best
practices identified during the design, implementation and
rollout of the solution.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
domain-specific architectures.

General Terms
Design, Standardization, Performance, Security.

Keywords
Application Server, Business Process, CICS, Compression, Core
Banking, Enterprise Application Integration, HTTP, Service-
Oriented Architecture, SOAP, Software Architecture, UDDI,
Web Services, WebSphere, Web Application, WSDL, XML,
XML schema.

1. INTRODUCTION
Sparkassen Informatik GmbH & Co. KG [18] provides Informati-
on Technology (IT) services to German savings banks.
Supporting 237 individual savings banks, Sparkassen Informatik
is one of the largest service and data centers in Germany. To
satisfy the individual business and technical requirements of the
savings banks, Sparkassen Informatik provides them with
standard and optional service offerings as well as with unified
interfaces to common business transactions. As such, Sparkassen
Informatik is a complete solution provider hosting mission-
critical enterprise applications and data stores for the savings
banks. At the heart of the solution stack is a real-time
transactional core banking solution, which is based on a CICS®
transaction monitor and a DB2® database management system
located in a centralized z/OS™ backend. Furthermore,
Sparkassen Informatik allows its customers and partners to
flexibly integrate other applications, which are either developed
individually or procured on the market place.

The resulting business model – Sparkassen Informatik acting as a
shared service provider for many different service requestors (the
savings banks) – inherently leads to a highly distributed, hetero-
geneous overall IT infrastructure and application landscape.
Sparkassen Informatik therefore is exposed to the following inte-
gration challenges:

• Fast, effective and inexpensive business process inte-
gration between Sparkassen Informatik and its custo-
mers, the savings banks, is the overall goal in this
context.

• To achieve this integration, efficient frontend to
backend connectivity is required – the savings banks
operate the end-user frontend applications, Sparkassen
Informatik provides the core banking backend.

• The centralized backend has to deal with a highly
heterogeneous frontend landscape, as the savings
banks decide for programming languages and runtime
platforms independently of each other.

• It must be possible to seamlessly integrate best-of-
breed software solutions available from Independent
Software Vendors (ISVs).

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

• Any selected integration platform must promote quality
factors such as ease of client access and resiliency, and
business-level benefits such as flexibility and agility.

1.1 Dynamic Interface: A Service-Oriented
Integration Architecture
Sparkassen Informatik’s strategic response to its integration chal-
lenges is a comprehensive integration and connector architecture
called Dynamic Interface. The Dynamic Interface provides
standardized and flexible access to a collection of business
functions, which are implemented in a core banking backend.
This offering is a key differentiator for Sparkassen Informatik,
because it offers savings banks and ISVs a highly convenient way
to connect frontend applications to the core banking backend.

The Dynamic Interface consists of two abstraction layers called
technology platform and application layer. The technology
platform is the glue between client applications and the business
functions; the concrete function invocation Application Program-
ming Interface (API) and transport protocol mapping is defined
on this layer. For each supported client environment and
distribution mechanism, there is a separate technology platform
(layer). For example, there are technology layers providing
support for Java and a proprietary Remote Procedure Call (RPC)
mechanism, which comes as a C API.

The application layer consists of a large set of banking-specific
functions, which we refer to as processes. Process granularity
ranges from Create, Read, Update, Delete (CRUD) operations on
core entities such as Person, Account, Contract, or Product, to
search facilities and more complete use cases such as portfolio
overviews, risk calculations and cross-selling functions.

This modular, two-layered interface design allows decoupling the
business-oriented application layer from concrete implementation
platforms. In case an additional client programming model has to
be supported, only the technology platform is affected.

1.2 Challenges and Issues
As we have outlined in Section 1.1, until the arrival of Web
services as an architecture alternative, a separate technology plat-
form layer instantiation had to be available for each client
programming language and platform to be supported.

However, it is desirable to minimize the number of required
technology layers, as the development and maintenance of server-
side support for several different Distributed Computing (DC)
technologies is an expensive undertaking. DC concepts such as
interface descriptions, service naming and lookup, transport pro-
tocols, data (un)marshalling and tooling differ from platform to
platform, and typically the learning curve to gain all required
skills is rather steep.

Furthermore, Sparkassen Informatik is not – and does not want to
be – a middleware platform vendor. However, the introduction of
any home-grown integration solution makes it necessary to de-
velop tools such as interface description browsers, stub
generators and test clients in addition to the runtime integration
solution. Selecting a solution built on open standards makes it
possible to buy rather than build such tools.

Finally, the continuous competition in the finance industry is a
driving force for the savings banks to enhance the integration

facilities to interact with their partners. Upcoming business mo-
dels require that business processes can interact dynamically
across enterprises. For example, many savings banks offer third-
party insurance products. Just-in-time access to such insurance
policies, which are processed by external insurance companies,
must therefore be supported. A ubiquitous integration technology
is required to provide such access upon demand.

All these issues forced Sparkassen Informatik to look for a new
approach based on open standards. In a joint effort with IBM
Software Group and IBM Global Services, Sparkassen Informatik
decided to evaluate the potential benefits of the Web services
technology.

2. VISION AND REQUIREMENTS
Since 1996, Sparkassen Informatik had attempted to consolidate
the solution so that only one interface technology could support
multiple client platforms. All previously existing technologies –
such as a proprietary communication protocol, (D)COM,
CORBA, Java, and a home-grown HTTP/XML solution – could
either not fulfill this vision or did not meet all requirements of a
truly Service-Oriented Architecture (SOA).

In contrast, Web services can be characterized as self-contained,
modular applications that can be described, published, located,
and invoked over a common Web-based infrastructure which is
defined by open standards. An early investigation of the Web
Services Description Language (WSDL) showed that its modular
structure, for example distinguishing between abstract port types
and concrete protocol bindings, nicely mirrors the two-layered
design of the Dynamic Interface introduced in Section 1.1.

Moreover, SOAP [17], the underlying messaging format (not an
acronym according to version 1.2 of the specification), is de-
signed to be platform- and implementation-neutral, and built on
already established Internet standards such as HTTP and XML.
We detected that in combination with WSDL, which provides a
formal and language-independent interface and access specifica-
tion, SOAP would be able to improve the existing solution.

In combination, WSDL definitions and a SOAP service provider
comprise the desired, unified and standards-based architecture
supported by commercially-off-the-shelf tooling. Introducing
either SOAP or WSDL alone would not have yielded sufficient
return on investment for the required design and development
effort.

High-level requirements. As mentioned earlier, we evaluated
the Web services technology with the intention to improve the
Dynamic Interface access technologies. The main goals and
requirements for the new Web services-based architecture
therefore were:

1. Minimize the number of required interfaces and middle-
tier implementations to support the different existing
client component models and interface technologies.

2. Reduce the development effort for the savings banks by
minimizing the interface complexity through encapsulati-
on and better integration into existing development tools.

3. Improve the interface documentation of the existing pro-
prietary HTTP/XML messaging interface, following the
design-by-contract philosophy.

4. Reduce the volume of data transferred between requester
and server.

5. Support very large numbers of deployed services (about
100 new functions to be deployed every year).

Rather challenging Non-Functional Requirements (NFRs) had to
be addressed: first and foremost, the service requestor (client)
environment is very heterogeneous in terms of platforms and pro-
gramming languages, including Java and Java 2 Enterprise
Edition (J2EE)™, Microsoft .NET C#, Microsoft .NET Visual
Basic™ and Visual Basic 6, as well as Perl and PHP.

Some application clients are directly used by customer-facing
staff. Hence, sub-second response times have to be achieved,
even if network capacity is low – for example, 64 kbit ISDN tele-
phone lines are used in certain rural areas.

Moreover, scalability is a must-have, as a 300% traffic growth
for the Dynamic Interface could be observed in recent years (or-
ganic growth, mergers). And, just as in any other enterprise-level
scenario, security requirements such as authentication, authoriza-
tion, integrity and confidentiality have to be met (sensitive data
is transferred). Finally, the envisioned solution has to have ex-
cellent interoperability, performance and development efficiency
(usability) characteristics.

3. PROJECT APPROACH AND SOLUTION
OUTLINE
Starting from the vision and the requirements outlined in the
previous section, we employed a staged approach to craft a Web
services-enabled solution architecture for the Dynamic Interface.

In fall 2001, we started with a conceptual feasibility study, or
project definition workshop, delivering a vision statement,
requirements and project goals as well as success criteria. Next,
we decided to prove the usability and maturity of Web services
implementations in a realistic, production-close environment. We
therefore initiated a Proof-of-Concept (PoC) project, which ran
from December 2001 to February 2002. The PoC was important
for risk minimization, as at project initiation time Web services
still were an emerging technology. The final production solution
was designed and implemented between August and December
2002 [2]. The current second release went live in July 2004.

3.1 Key Architectural Decisions
The lack of standard interface documentation was one of the
major business drivers for the project in order to leverage
wizards provided by standard development tools. We addressed it
by introducing WSDL descriptions for the banking functions.
SOAP/HTTP became the message exchange format connecting
Sparkassen Informatik applications with the functions provided
by the Dynamic Interface.

Automatic WSDL provisioning from the existing, XML-based
function repository is a key feature of the solution. Due to the
widespread acceptance of an existing, HTML-based repository
frontend, we decided to simply enhance the existing HTML
presentation of each business function with the corresponding
WSDL description. Therefore, there was no pressing need for
introducing a service broker such as a Universal Discovery,
Description and Integration (UDDI) registry.

Figure 1 illustrates the resulting three-tiered architecture of the
resulting overall solution, providing a single, unified interface to
different clients. It also outlines the key role of the metadata re-
pository, which drives code generation for all tiers.

SOAP provides connectivity between the client tier and the
WebSphere® Application Server (WAS) middle tier, which has
pure gateway character. The interface between the middle tier
and the backend is provided by the IBM CICS Transaction Gate-
way (CTG) and IBM WebSphere MQ®.

Java Client

Web
Application

.NET Client Browser Office
Application

Web Services Adapter Layer

Java Framework

Java Backend Connectors (IBM WebSphere MQ, CICS)

Control Logic

Business Logic

WSDL

generate

generateDatabase
(IBM DB2)

Metadata
Repository

generate

Documentation

(pSeries)

(zSeries)

Platform
Independent

S
O

A
P

S
O

A
P

S
O

A
P

IBM
WebSphere

D
yn

am
ic

 In
te

rf
ac

e

IBM
CICS

Figure 1. Architecture Overview of the Integration Solution

3.2 Interface Design: Generic vs. Generated
The solution architecture could immediately satisfy Require-
ments 1 (have a unified interface) and 3 (improve documentati-
on) from Section 2 through the use of SOAP and WSDL. To
satisfy Requirements 2 (reduce the development effort) and 4
(reduce network traffic), we had to carefully model the service
invocation interface, and to decide between a model-driven and a
generic, document-oriented design style.

A generic, function-independent API requires deep knowledge of
each business function and performs most error checking at
runtime. On previous projects we had gained the experience that
a well-modeled, type-safe API following the command pattern
[10], providing a specific client interface for each business
function – instead of a generic one for all – hides complexity and
reduces the development effort significantly.

To further satisfy Requirement 1 (to reduce the development ef-
fort), we had to design the new Web services API in such a way
that a high-level API could easily be generated by WSDL-aware
tools; this is an instance of the remote proxy pattern [10]. The
API also was supposed to hide all technical details of the service
implementations and the technology platform from the client
developer.

These considerations lead us to an operation design with
complex, function-specific XML schema definitions for the
request and response messages (or input and output parameters,
respectively). For each business function, a corresponding Web
service provider bean was implemented as a J2EE component
following an adapter pattern [10]. The interface signature itself
was defined as follows:

ResultBean = execute(ContextBean, InputBean,
WishlistBean)

The model-driven API was designed in such a way that the
ContextBean is identical for all functions, representing
session parameters like user and session identification. The other
beans are business function specific. The InputBeans are re-
sponsible for input parameters, the ResultBeans for all output
parameters and error messages. The WishlistBeans consist
of indicator fields matching the output parameters, as the client
can explicitly ask for a subset of all available result information
(in order to reduce network traffic and processing time).

3.3 Largely Automated Development Process
In response to Requirement 5 from Section 2 (large number of
services), we envisioned that a high degree of code generation
based on the metadata information stored in the repository, along
with the out-of-the-box integration of Web services into standard
products available on the market, could result in faster
development cycles, better software quality, and development
cost reductions.

The resulting integrated code generator- and repository-supported
development process, which is outlined in Figure 2, is a key ele-
ment of our solution architecture:

CICS
Backend

CTG* / MQSeries

WebSphere
Application

Server

SOAP Server
Runtime

Backend Developer

Client Developer

Generator

Repository

HTML
Documentation

Developer Portal

WSDL

New
ApplicationP

ro
xy

S
O

A
P

R
u

nt
im

e

GenerateGenerate

Search and Select

New / Change Function

Generate C/Cobol
Code

Define

Generate
Deployment Descriptor

Adapter

Use
Selected
Function

Read

End User

DB2

* CICS Transaction Gateway

Figure 2. Integrated Application Development Process

A new business function is first described in the repository. Code
generation support is then available on all three tiers. The
backend business logic developer is supported by generated
database access code; for the middle tier, deployment information
and the code for the Web services access layer is created. WSDL
service descriptions are generated as well, which can be imported
into different client development environments to create service
invocation proxies for various programming languages.

3.4 Service Deployment: One vs. Many
Another challenge was how to rapidly deploy the large amount of
existing processes as Web services in the middle tier of the solu-
tion. Implementing the respective Web service providers on a
one-by-one base would have been rather development and
maintenance resource intense, as new processes are added con-
tinuously.

We therefore investigated two architecture alternatives:

• Developing a single, generic Web service provider implemen-
tation, as well as a set of custom deserializers to mediate the
incoming requests (structured according to the generated
client-side interface WSDL contract described in Section 3.2),
to this generic Web service. This variation of the façade and

command patterns [10] was our original approach, minimizing
the amount of coding required on the middle tier.

• Generating specific Web service implementation classes for
all processes, as well as corresponding Web services deploy-
ment descriptor entries. In the second release, we decided to
use this approach, because at design time the JAX-RPC [14]
support for custom serialization was not sufficient. Such
support would have been required for implementing the first
alternative.

Figure 3 illustrates the server-side components implementing the
second alternative. WAS 5.0.2 Web service engine represents the
IBM WebSphere SOAP engine supporting JAX-RPC;
xxxBindingImpl are the more than 500 Web service implementa-
tion classes.

B
ackend

Java C
onnector F

ram
ew

ork (C
T
G

, M
Q

)

001BindingImpl

Process
Backend

Call
Exception
handling

001BindingImpl

Process
Backend

Call
Exception
handling

WAS 5.0.2
Web service engine

WebSphere Application Server (WAS)

In Message

Out Message

5xxBindingImpl

Process
Backend

Call
Exception
handling

5xxBindingImpl

Process
Backend

Call
Exception
handling

Figure 3. Server-side Component Model

3.5 Message Verbosity Countermeasures
As already mentioned as a requirement in Section 2, we had to
achieve good response times and avoid bottlenecks even in
situations when only low network capacity was available. A
related key issue, which we identified at an early stage, is the
high amount of XML overhead typically produced by SOAP
runtimes. There is a clear performance penalty for using SOAP
given our measured numbers for payload vs. SOAP message size
(see below). However, SOAP was an architectural imperative
given that the requirement was to deliver application inter-
operability with the heterogeneous client environment (.NET,
Java, and other platforms to be supported, see Section 2).

In our environment, payload to SOAP message size ratio was 1:4
in the best case and sometimes significantly worse. For example,
we measured a 1:16 ratio for a SearchPerson request during the
early project stages, when using the rpc/encoded communication
style and the Apache SOAP 2.2 implementation (which employs
a rather verbose serialization scheme, always adding explicit type
information for each XML element in the envelope).

XML verbosity can be a challenging problem, as there are more
related requirements than just a need for algorithm efficiency.
For example, a generic algorithm is desired, no software
distribution effort should be introduced, and benefit and
overhead have to be balanced (e.g., data reduction rate and
reduced network bandwidth versus increased CPU consumption).

Our solution for the message verbosity problem in the first
production release was to base the implementation on SOAP
transport hooks allowing a flexible integration of different data
reduction algorithms. Clients had the flexibility to select the

optimal data reduction algorithm for their particular usage
scenarios.

However, tests showed that the GNU zip algorithm is a good
solution for many scenarios, especially because inexpensive im-
plementations exist for the most popular platforms and imple-
mentation languages. Based on our experience, the transferred
XML data streams can typically be reduced by 40-50%. In the
second release, we therefore decided to concentrate on one algo-
rithm, now making use of the built-in response compression
capabilities provided by the Web server and SOAP engines in
use.

4. PROJECT RESULTS
The Web services-enabled Dynamic Interface is in production
now and well accepted, delivering the expected business benefit
of providing a universal, low-cost, frontend-to-backend integrati-
on technology that can easily be enhanced (about 100 new servi-
ces/processes are released every year). At the time of writing, six
client applications use the new interface already, with many more
being in the pipeline.

Client developers appreciate the new high-level API, and
experience the desired productivity gain. Over time, the Web
services interface will replace all existing proprietary ones; for
the time being, a transition and coexistence phase is ongoing.

4.1 Project Approach
Regarding the project approach, the three-phased approach out-
lined in Section 3 turned out to be very helpful, because it
allowed the team to learn and grow over the stages and to
mitigate the mutual project risks.

On all three project stages, we delivered in time and on budget.

4.2 Technical Aspects
Microsoft to Java interoperability for SOAP was achieved with
reasonable testing effort (less than ten person days in the first
release). On the WSDL level, we had to come up with several
workarounds; all required knowledge is public and available at
developer forums such as IBM developerWorks [11]. Issues
requiring workarounds were WSDL import statements and XML
namespaces, implicit vs. explicit typing in the SOAP envelope,
null values, binary data serialization, and SOAP Section 5 Enco-
ding ambiguities (see below). The work of the Web Services
Interoperability (WS-I) initiative [21], whose Basic Profile be-
came available after our first release had gone into production,
provides significant further improvements, so that in the second
release, the SOAP interoperability testing effort reduced to being
almost negligible. To define WSDL consumable both by Micro-
soft and by Java tools remained a rather tedious task even on the
second release.

The SOAP server performance met the requirements. We
experienced no significant overhead compared to the proprietary
XML/HTTP solution that existed before. Not surprisingly, SOAP
engines using SAX parsing tend to outperform those making use
of DOM, and document/literal styled communication performs
better than the rpc/encoded mode (these two SOAP communica-
tion styles and encoding schemes are discussed in detail in [6]).

Web services tool support speeds up projects significantly. For
enterprise scale projects, the investment into production-strength

tools generally available as products should be made. Open
source tools can be a low-cost alternative for smaller efforts.

Not all Web services technologies have to be used in each and
every project. For example, the service repository does not
always have to be a UDDI registry. The existing XML-based pro-
cess repository does a perfect job in our case; WSDL service
descriptions can be generated from the information contained in
the repository. To enable build-time service discovery, we simply
had to enhance the existing HTML frontend to the XML process
repository.

4.3 Issues and Countermeasures
SOAP at its heart is just a messaging format. The data type
encoding is an optional part of the specification. However, from
our point of view, a large amount of the value-add of SOAP lies
in automatic (de)serialization support. Due to the issues
pertaining to the rpc/encoded communication style, the wrapped
document/literal mode has emerged as a de-facto standard both
in the Java and in the Microsoft world; it is already described in
the 1.1 version of the JAX-RPC specification [14]. This style
should be formally adopted in the WSDL and WS-I specification
efforts, and, in the Java world, be aligned with JAX-B [13].

The SOAP Chapter 5 Encoding has conceptual flaws. Until
recently, this data model, which for historical reasons is different
from XML Schema, was the default used by many RPC-oriented
code generation tools, especially in the Java world.
Unfortunately, the serialization algorithm defined by the SOAP
specification is ambiguous and gives the writer many choices, for
example how to represent arrays. The reader had to be able to
understand them all. This caused some extra development effort
in our project; in general, it is very hard, if not impossible for
tool vendors to guarantee interoperability. WS-I has therefore
decided to ban the SOAP Section 5 Encoding from its
interoperability profile. For these reasons, in our second release
we use wrapped document/literal styled messages rather than
rpc/encoded ones.

Null values frequently cause tools and runtimes to fail. Several
SOAP to programming language mappings had problems with
the serialization and deserialization of null values, which are
allowed in XML Schema (nillable=”true” attribute) and
SOAP. Consider the following scenario: an empty versus a null-
valued phone number in the CustomerMoves function, an empty
phone number indicating that there is no phone in the new home
(yet), and a null-valued phone-number indicating that the old
phone number continues to exist after the move. In the Java
world, the problem can be solved because the SOAP/XSD to Java
mappings typically are configurable, and wrapper classes such as
java.lang.String and java.lang.Integer exist. In
Microsoft .NET, to the best of our knowledge such features
currently do not exist for simple types. We had to define a
workaround here.

4.4 Lessons Learned
Our conclusion from these positive results is that Web services
are ready for production use, solving real-world problems with a
mature and stable base technology stack. The standards and
product stacks certainly still have to be improved and completed,
particularly in the higher layers as defined in [9]. However, the

XML, WSDL, and SOAP core existing today has proven its
point.

The success of a Web services project to a large extent is driven
by the general architectural decisions such as choice of an appro-
priate hardware and operating system platform, as well as non-
technical factors such as management of expectations and good
teamwork. All practices established on other application develop-
ment projects can be fully leveraged.

A decision against a certain element of the technology, e.g.,
UDDI, or concerns in areas such as security and transactions, can
not justify ruling out the entire technology – the modular
organization of the various Web services specifications allows a
best-of-breed strategy. Complementary technologies can be used
to complete the Web services stack on a per-scenario base.

When assessing the maturity of Web services, the
implementation alternatives should also be considered – for
example, is there out-of-the-box support for secure reliable trans-
actions in your home-grown, proprietary distributed computing
technology?

5. WEB SERVICES BEST PRACTICES
The best practices in this section directly originate from our
experiences gained in this project. We can only briefly introduce
a small subset of these practices here; the text book Perspectives
on Web Services – Applying SOAP, WSDL, and UDDI to Real-
World Projects [24], features all of them in much more detail,
along with additional ones originating from other projects.

Follow the design-by-contract principle for service modeling.
We recommend always describing services in WSDL and XML
schema to decouple client and server development. For example,
the only communication link between our client and our server
implementation teams was WSDL document exchange via e-mail
(PoC) and service repository (production releases). Consider de-
veloping your own WSDL generator if many similar processes
have to be supported or a server-side function repository exists
(as in our case). An indication that a custom generator might be a
good idea is that developers copy-and-paste extensively [24].

Elements of Service-Oriented Analysis and Design (SOAD) [22]
starts a more comprehensive discussion of service modeling,
suggesting an interdisciplinary approach combining elements
from Business Process Modeling, Enterprise Architecture
Frameworks and Object-Oriented Analysis and Design.

Select service messaging styles based on interoperability
characteristics and tool support. The style and use
attributes in the WSDL specification can be set to
document/literal or rpc/encoded [6]. Historically, rpc/encoded
had better tool support, and interoperability could be achieved in
most cases (we used this style successfully in our first release).
However, due to various ambiguities pertaining to the
rpc/encoded (de)serialization rules, WS-I now prohibits this
style, so that document/literal has become the preferred style
supported by many tools (we changed the generated interfaces to
document/literal in our second release).

Carefully evaluate which service matchmaking strategy fits
your needs. Using UDDI on the (public) Web is problematic not
for technical, but organizational reasons. Issues such as business
model, data quality, and trust have to be answered. For these rea-

sons, we believe that UDDI is most useful in intranet and
extranet scenarios where the user groups are well known [24]. As
we support more than 500 Web services, introducing a private
UDDI registry would have been perfectly justified in our case.
We would have done so if a metadata repository had not already
been in place.

Apply standards pragmatically; follow the 80-20 rule. It is not
required to always use all elements of a technology. Furthermore,
we recommend upgrading to higher specification levels only if
there is a concrete need, and not for its own sake (for example,
even in the second release we decided for SOAP 1.1 rather than
SOAP 1.2). Unnecessary, distracting changes can be minimized
this way. The 80-20, or keep-it-simple, rule also helps to achieve
interoperability [24].

6. CONCLUSIONS AND OUTLOOK
In this report, we described how we designed and implemented a
Web service-oriented architecture consisting of standardized
business functions (processes) to be assembled in custom
applications in a flexible and channel-neutral manner. The
resulting Web services enablement of the Dynamic Interface is a
key building block in the enterprise architecture of Sparkassen
Informatik, providing the glue between applications and business
functions.

We decided for Web services because they are independent of
any component model, implementation language, transport
protocol, operating system and platform (loose coupling
promoted). Interface and implementation are separated from each
other (facilitating encapsulation). Furthermore, Web services are
based on open standards and can be invoked over existing
Internet/intranet infrastructures. There is comprehensive Web
services support in modern software development tools such as
IBM WebSphere Studio Application Developer™ and Microsoft
Visual Studio .NET™.

Concrete benefits the Web services solution brings to the table in
our context are: Design by contract: WSDL provides a standard
interface description of business components; there is off-the-
shelf support in standard development tools (no software
distribution required). Improved client interface: A WSDL- and
XML schema-driven, business function-specific API is available,
which allows coding against generated convenience proxies
rather than lower-level XML and HTTP libraries. The
availability of WSDL and tool support for it was one of the main
drivers for our decision towards Web services – SOAP alone
would not have been enough. As envisioned, WSDL played a key
role to the success of the project. Write once, use everywhere: It
is no longer required to write custom, platform-specific code;
true interoperability between platforms is achieved via SOAP.

We took the following key architectural decisions:

• Service modeling and granularity: general advice is to
model as coarse-grained as possible, the service boun-
dary should reflect a business process (or activity). In
our case, lower level CRUD and search functions as
well as higher-level services are exposed. We decided
for a process model-driven, generator-supported service
invocation interface.

• SOAP runtime and API: Our client API is JAX-RPC.
As SOAP runtimes, we worked with Apache SOAP 2.2
(PoC and first release), an optimized IBM implementa-
tion of JAX-RPC/JSR 109 called WebSphere 5.0.2
SOAP (second release), and Apache Axis (client-side).

• SOAP communication style and encoding: we
supported both rpc/encoded and document/literal in the
first release, but moved away from rpc/encoded for the
second release due to its conceptual flaws such as
usage of an outdated, obsolete data model (which is
different from XML Schema) and inherent ambiguities
(which cause interoperability problems).

• Regarding service matchmaking, an XML/HTML
service repository (and frontend) already is in place.
Therefore, we do not use UDDI, even if a business
need for a central service broker/directory exists.

For the future, Sparkassen Informatik is committed to continue to
support and enhance its Web services solution. To maintain WS-I
and other standards compliance [21] is a continuous activity. Se-
veral functional enhancements are planned, further improving
client developer productivity. Support for additional Web service
provider platforms and multiple transport protocols exposed
through the same client interface could evolve the solution into a
full-blown, distributed Enterprise Service Bus (ESB).

Another area of investigation is declarative and descriptive
process flow execution (composition of higher-level services), as
available through the Business Process Execution Language for
Web Services (BPEL) [3,15] and BPEL modeling tools and
runtimes. As of today, the assembly of processes into end-user
applications is application specific and typically hard-coded on
the client side; a predefined set of high-level services is
orchestrated in the backend (programmatically rather than
declaratively).

Finally, an additional option would be to leverage the emerging
Web Services Security (WS-Security) standards and their imple-
mentations as defined by the OASIS consortium [16]. Currently,
all security requirements such as integrity, confidentiality,
authentication and authorization are fully addressed on the net-
work layer, on the transport layer, and on the application layer.

Our conclusion from our encouraging project results is that the
Web services core technologies, namely XML, WSDL, and
SOAP, are ready for production use, and able to solve real busi-
ness problems. On the other hand, the support for the higher
layers of the overall Web services stack (e.g., process choreo-
graphy and security) still has to improve; two key challenges for
any related standardization and product development effort are to
maintain backward compatibility and not to break the original
simplicity of the approach. For example, we expect future
versions of specifications such as the WS-I Basic Profile and
JAX-RPC not to cause any major reengineering efforts for the
existing users of this technology.

In our case, client-side usability is the benchmark: our Web ser-
vices-based process interface at all times has to be easier to code
against and better maintainable than the existing proprietary
approaches in order to justify the decision for Web services in the
long term. It only makes sense for Sparkassen Informatik to buy
rather than build middleware such as SOAP runtimes and WSDL

tooling if these products meet these high standards, as well as
general quality factors such as completeness of standards
support, seamless interoperability, API stability, and robustness –
today, as demonstrated in this project, and in the future.

7. ACKNOWLEDGMENTS
This paper is the result of a joint project effort. In particular, we
would like to recognize the following individuals: Michael
Brandner (IBM); Jiri Andress, Martin Fleming, Dr. Karsten
Johannsen, Frank Strecker, and Thorsten Stumpf (also IBM);
Reinhard Nolte, Guido Ranft, and Torsten Verstappen
(Sparkassen Informatik).

8. REFERENCES
[1] Adams, J., Koushik S., Vasudeva G., Galambos G., Patterns

for e-business – A Strategy for Reuse, IBM Press, 2001.

[2] Brandner M., Craes M., Oellermann F., Zimmermann O.,
Web Services-Oriented Architecture in Production in the Fi-
nance Industry, Informatik-Spektrum 02/2004, Springer-
Verlag, 2004.

[3] Business Process Execution Language for Web Services
Version 1.1, available from
http://www.ibm.com/developerworks/webservices/library/w
s-bpel

[4] Brown K., Reinitz R., Web Services Architectures and Best
Practices, IBM developerWorks 2003,
http://www.ibm.com/developerworks/websphere/techjournal
/0310_brown/brown.html

[5] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and
Stal M., Pattern-Oriented Software Architecture – a System
of Patterns. Wiley, 1996

[6] Butek, R., Which style of WSDL should I use?, IBM
developerWorks 2003,
http://www.ibm.com/developerworks/webservices/library/w
s-whichwsdl

[7] Component Based Development and Integration (CBDI),
Insight for Web Service & Software Component Practice,
http://www.cbdiforum.com

[8] Endrei M., et al., Patterns: Service-oriented Architecture
and Web Services, IBM Redbook, April 2004,
http://www.redbooks.ibm.com

[9] Ferguson, D. F., Storey T., Lovering B., Shewchuk, J.,
Secure, Reliable, Transacted Web Services, IBM and
Microsoft 2003,
http://www.ibm.com/developerworks/webservices/library/w
s-securtrans

[10] Gamma E., Helm R., Johnson R., Vlissides J., Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995

[11] IBM developerWorks portal. Articles, tutorials, sample
code, links to trial versions of software and open source
assets. http://www.ibm.com/developerworks/webservices

[12] IBM e-business on demand overview, available from
http://www.ibm.com/e-business/index.html

[13] JAX-B, Java XML Binding, available via
http://java.sun.com

[14] Java XML API for Remote Procedure Calls (JAX-RPC),
available via http://java.sun.com

[15] Leymann F., Roller D., Schmidt, M. T., Web Services and
Business Process Management, IBM Systems Journal, Vol.
41, No 2, 2002

[16] OASIS consortium, http://www.oasis-open.org

[17] Simple Object Access Protocol (SOAP) 1.1, W3C Note 08
May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-
20000508/

[18] Sparkassen Informatik on the Internet,
http://www.sparkassen-informatik.de

[19] Wahli U., Tomlinson M., Zimmermann O., Deruyck W,
Hendriks D., Web Services Wizardry with WebSphere Studio
Application Developer, IBM Redbook, 2002

[20] Web Services Description Language (WSDL), W3C Note,
http://www.w3.org/TR/wsdl

[21] Web Services Interoperability Initiative (WS-I),
http://www.ws-i.org

[22] Zimmermann O., Krodgdahl P., Gee, C. Elements of
Service-Oriented Analysis and Design, IBM
developerWorks 2004,
http://www.ibm.com/developerworks/webservices/library/w
s-soad1

[23] Zimmermann O., Müller F., Web Services project roles –
The team perspective, IBM developerWorks 2004,
http://www.ibm.com/developerworks/webservices/library/w
s-roles

[24] Zimmermann O., Tomlinson M., Peuser S., Perspectives on
Web Services – Applying SOAP, WSDL and UDDI to Real-
World Projects, Springer-Verlag, 2003

