
Ivan Mistrík
Independent Consultant, Germany

Antony Tang
Swinburne University of Technology, Australia

Rami Bahsoon
University of Birmingham, UK

Judith A. Stafford
Tufts University, USA

Aligning Enterprise,
System, and Software
Architectures

Aligning enterprise, system, and software architectures / Ivan Mistrik ... [et al.], editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book covers both theoretical approaches and practical solutions in the processes for aligning enterprise,
systems, and software architectures”--Provided by publisher.
 ISBN 978-1-4666-2199-2 (hardcover) -- ISBN 978-1-4666-2200-5 (ebook) -- ISBN 978-1-4666-2201-2 (print & perpetual
access) 1. Management information systems. 2. Business enterprises--Computer networks. 3. Information technology--
Management. 4. Software architecture. I. Mistrík, Ivan.
 HD30.213.A45 2013
 658.4’038011--dc23
 2012026463

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Editorial Director: Joel Gamon
Book Production Manager: Jennifer Romanchak
Publishing Systems Analyst: Adrienne Freeland
Development Editor: Myla Merkel
Assistant Acquisitions Editor: Kayla Wolfe
Typesetter: Alyson Zerbe
Cover Design: Nick Newcomer

Published in the United States of America by
Business Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

176

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

Olaf Zimmermann
IBM Research GmbH, Switzerland & ABB Corporate Research, Switzerland

Christoph Miksovic
IBM Research GmbH, Switzerland

Decisions Required vs.
Decisions Made:

Connecting Enterprise Architects and
Solution Architects via Guidance Models

ABSTRACT

Contemporary enterprise architecture frameworks excel at inventorying as-is and at specifying to-be
architecture landscapes; they also help enterprise architects to establish governance processes and ar-
chitectural principles. Solution architects, however, expect mature frameworks not only to express such
fundamental design constraints, but also to provide concrete and tangible guidance how to comply with
framework building blocks, processes, and principles – a route planner is needed in addition to maps of
destinations. In this chapter, the authors show how to extend an existing enterprise architecture framework
with decision guidance models that capture architectural decisions recurring in a particular domain.
Such guidance models codify architectural knowledge by recommending proven patterns, technologies,
and products; architectural principles are represented as decision drivers. Owned by enterprise archi-
tects but populated and consumed by solution architects, guidance models are living artifacts (reusable
assets) that realize a lightweight knowledge exchange between the two communities – and provide the
desired route planners for architectural analysis, synthesis, and evaluation.

DOI: 10.4018/978-1-4666-2199-2.ch010

177

Decisions Required vs. Decisions Made

INTRODUCTION

A key objective of enterprise architects is to
align the existing and the future IT systems with
the business model and the strategic direction
of an enterprise. Architecture frameworks sup-
port enterprise architects when they inventory
the existing (as-is) and when they specify the
future (to-be) architecture landscapes; they also
help them to establish governance processes
and architectural principles. However, solution
architects that work on specific implementation
projects expect mature frameworks not only to
express such fundamental design constraints,
but also to provide concrete and tangible guid-
ance how to comply with framework building
blocks, processes, and principles. In other words,
a route planner is needed in addition to maps of
destinations.

In practice, we have come across the following
collaboration issues between enterprise architects
and solution architects that call for such a route
planner:

1. Availability Issues: Experienced, knowl-
edgeable enterprise architects have been
appointed, who managed to define to-be
architectures and to release enterprise-wide
architectural principles. However, they did
not find the time yet to author additional
documentation how to adhere to these prin-
ciples and they are slow to respond to requests
for reviews and/or project participation.
Consequently, the enterprise architecture ar-
tifacts are ignored by projects teams or, even
worse, “pseudo-compliance” is declared at
an early stage, but never really strived for
and, consequently, never actually reached.

2. Consumability Issues: To-be architectures
and/or architectural principles are docu-
mented, but difficult to understand and to
relate to design concerns on projects. Such
issues are often caused by inadequate levels

of abstraction and detail: if specified on
rather high levels, enterprise architecture
artifacts run the risk of being perceived to
be full of obvious truisms and/or trivial; on
the contrary, rather detailed specifications
take a long time to create, comprehend, and
maintain; they might also be impossible to
implement under economic constraints.

3. Enforcement and Acceptance Issues:
Workable enterprise architecture guidelines
are in place, as well as a governance pro-
cess. However, the guidelines established
by the enterprise architects (for the benefit
of the whole enterprise) are not followed
properly because project teams do not fully
appreciate their value; due to their narrower
design scope, they view these guidelines as
unwelcome additional design constraints. In
practice, we also observed that solution ar-
chitectures often pass formal quality reviews
with certain obligations; e.g., architectural
smells are reported and refactorings are
suggested to reduce technical debt (Brown,
Nord, & Ozkaya, 2011). However, such
obligations are not always followed up
upon. In such settings, solution architects
can expect to “get away” with violations of
architectural principles, which typically are
justified by short term business priorities and
stakeholder pressure.

These issues are further complicated when
third parties such as external consulting firms
and outsourcing providers with different goals
and concerns get involved; this is often the case
in practice today.

Examples of architecture design issues that of-
ten require the attention of enterprise architects are:

• The architectural principle that all sensi-
tive data has to be secured: security is not
a single requirement, but a set of responses
to certain threats requiring a risk analysis

178

Decisions Required vs. Decisions Made

and risk management (mitigation) strategy,
as well as a security requirements engi-
neering effort. For instance, a data sensi-
tivity classification scheme might be miss-
ing entirely. In other cases, such schemes
only exist in rudimentary forms; specifi-
cally, examples or concrete advice how to
classify application data such as customer
profiles, orders, and invoices are rarely
given. This example illustrates issues 1
and 2 from above (no availability and poor
consumability).

• A data classification scheme exists and dis-
tinguishes uncritical from critical Personal
Information (PI) and from highly critical
Sensitive Personal Information (SPI); an
infrastructure-level security zone model
including network transport-level firewalls
has been defined as well. However, the
enterprise-wide security architecture does
not specify whether HTTPS connections
using server-side certificates (128 bit) are
good enough to protect zone-to-zone traf-
fic that goes through firewalls if this traf-
fic carries SPI. Such assessment requires
links from business-level compliance rules
to logical (functional) application archi-
tectures and then to physical infrastructure
architectures; such links often are not mod-
eled explicitly so that traceability cannot
be provided. This scenario also exempli-
fies issues 1 and 2 (lack of availability and
limited consumability).

• The security architecture on the enterprise
level clearly states that if SPI is transferred
across firewalls, HTTPS has to be used;
however, this decision is overruled and an
unsecured HTTP channel is established by
opening a particular port for a tactical ap-
plication supposed to go live soon due to
urgent business needs (e.g., to respond to a
product announcement recently made by a
competitor); this tactical solution remains

operational for several years although vio-
lating an architectural principle from the
enterprise level. This example illustrates/
instantiates issue 3 from above (lack of en-
forcement and acceptance).

Other examples of architectural decisions that
call for guidance from the enterprise level are:
technology platform choices, vendor preferences,
how to deal with regulatory and legal constraints,
including audit requirements such as complete-
ness, accuracy, validity and restricted access
(Julisch, Sutter, Woitalla, & Zimmermann, 2011),
usage of open source software (often a separate
principle or decision is required per open source
license scheme such as Apache or GNU Public
License) (Haischt & Georg, 2010), and so forth.
Additional examples, also pertaining to the design
of logical (functional) application architectures
and to application integration, are presented in
our previous publications (Zimmermann, 2009).

These examples illustrate the gap between en-
terprise architecture and solution architecture that
exists in the industry. The gap has multiple facets –
objectives, terminology, methods, techniques, and
tools of the two communities differ substantially.
In our opinion, enterprise architecture only has a
chance to have a sustainable impact on the busi-
ness and IT projects if this gap is overcome; to do
so, extensions to existing methods are required.

Objective: To close the gap between enterprise
architects and solution architects, this chapter
introduces a novel way for these communities
to improve their communication and knowledge
exchange:

How can enterprise architects support project-
level solution architects with concrete managerial
and technical advice regarding the architectural
decision identification, making, and enforcement
activities required to ensure that the system under
construction meets the expectations of its primary

179

Decisions Required vs. Decisions Made

stakeholders (i.e., users, sponsors), but also re-
spects the constraints imposed by implementation
governance authorities (e.g., enterprise architects,
auditors)?

In response to this question, we propose to
let enterprise and solution architects share archi-
tectural decision models that collect key issues
and proven solutions to them. In this effort, we
leverage, combine, and extend concepts from The
Open Group Architecture Framework (TOGAF)
(The Open Group, 2009) and from SOA Deci-
sion Modeling (SOAD) (Zimmermann, 2011).
Specifically, we show how to extend TOGAF with
SOAD guidance models that capture architectural
decisions recurring in a particular domain such
as Service-Oriented Architecture (SOA) design
(Krafzig, Banke, & Slama, 2005). Such guid-
ance models codify architectural knowledge by
recommending proven patterns, technologies, and
products; architectural principles are represented
as decision drivers. Owned by an enterprise ar-
chitect but populated and consumed by solution
architects, guidance models are living artifacts and
reusable assets that realize a lightweight know-
ledge exchange between the two communities.

Being integrated into TOGAF, guidance
models can provide the desired route planners
for architectural synthesis on implementation
projects. Enterprise-level decision making is out
of our scope for the time being; the presented con-
cepts are designed to also work on that level. One
can view TOGAF as an “über-guidance model”
for enterprise architecture construction: TOGAF
does not formally model decisions in an explicit
guidance model, but still comprises a knowledge
repository. Note that a solution constructed in an
implementation project may be a marketed product
such as an Enterprise Resource Planning (ERP)
package or a client-specific solution (resulting
from one-of-a-kind application development or
integration).

INTRODUCTION TO THE
CASE STUDY: PREMIER
QUOTES GROUP (PQG)

To be able to exemplify our approach, we now
introduce a basic scenario from the insurance
industry. The scenario concerns a fictitious com-
pany and is simplified due to space constraints;
however, business scenario, existing enterprise
application architectures, and technical design
considerations in the case originate directly from
our rich project experience in several industry
sectors (e.g., financial services, telecommunica-
tions, and automotive).

Let us assume that PremierQuotes Inc., an
insurance company, acquired DirtCheap Insur-
ance, another insurance company, and formed the
PremierQuotes Group (PQG) to fulfill the growth
expectations of its stakeholders (Zimmermann,
Tomlinson, and Peuser, 2003). The two merged
companies have just consolidated their customer
care, contract, and risk management applications.
Let us assume that the unified contract application
communicates with a customer database and a
policy backend to serve end users via three cus-
tomer self service, agent, and back office channels.
Risk management application and policy backend
are COBOL applications running on the IBM Sys-
tem z platform. The contract application is a Java
Enterprise Edition (JEE) application. Customer
care is a software package; its Web application part
consists of PHP scripts. An external data source,
currently provided by a government information
server on the Internet, is integrated, providing
crime statistics (fraud history) by geographical
area in a proprietary file format.

The three physical tiers are the client tier,
the mid tier hosting presentation, domain, and
resource (data) access logic, and the backend
tier. World-Wide Web (WWW) infrastructure
connects the client tier with the mid tier (over
the Internet for the customer self service chan-
nel and the agent channel, over an intranet for

180

Decisions Required vs. Decisions Made

the back office channel). Traditional Enterprise
Application Integration (EAI) middleware (e.g.,
message-oriented middleware) is used to connect
the mid tier with the backend tier.

Figure 1 illustrates a representative subset
of this Enterprise Application (EA) landscape
at PQG.

The client tier contains all application com-
ponents directly serving the users. Examples are
Web browsers and rich client applications running
on Personal Computers (PCs) used by customers,
agents, and back office staff. The mid tier com-
prises the three applications. These applications
are logically layered into presentation, domain,
and resource (data) access logic layers. Typical
responsibilities of the mid tier are input validation,
processing control, session state management,
calculations, and manipulations of enterprise
resources. The backend tier stores enterprise re-
sources persistently and coordinates concurrent

access to the enterprise resources (i.e., customer
profiles, offers, and policies). This tier hosts da-
tabase servers, but also other systems which in
themselves may be physically tiered, but are lo-
cated external to the company or in another orga-
nizational domain. The policy backend and the
government information server are examples.
Various communication channels exist within and
between tiers (Figure 1).

BACKGROUND: APPLYING THE
OPEN GROUP ARCHITECTURE
FRAMEWORK (TOGAF)

There is a wide range of methods, artifact clas-
sification taxonomies, and entire frameworks that
can be adapted by enterprise architects to manage
enterprise architecture landscapes such as the
one at PQG. Prominent examples include The

Figure 1. PQG enterprise applications: System contexts, architecture overview (as-is situation)

181

Decisions Required vs. Decisions Made

Open Group Architecture Framework (TOGAF)
(Open Group, 2009), the Department of Defense
Architecture Framework (DoDAF) (Department
of Defense, 2010), the Enterprise Unified Pro-
cess (EUP) (Ambler, Nalbone, & Vizdos, 2005),
which is an extension of the Rational Unified
Process (RUP) (Kruchten, 2003), and the Zach-
man Framework (Sowa & Zachman, 1992). The
Zachman Framework was one of the first of its
kind to provide a comprehensive approach for the
classification of enterprise architectural artifacts.
Numerous proprietary architecture frameworks
from commercial (professional) service providers
such as consulting firms exist as well.

Among these frameworks, TOGAF can be
viewed as representative – or even as a de facto
standard – due to its general availability, maturity,
comprehensiveness, and wide acceptance in many
countries around the world. We applied TOGAF
ourselves in a number of enterprise architecture
engagements for clients in several industries.
Hence, we will focus on the structure and content
of the TOGAF 9 framework in this chapter. Our
integration concepts are designed to also work
with other enterprise architecture frameworks.

TOGAF Overview

TOGAF originally has its roots in the Techni-
cal Architecture Framework for Information
Management (TAFIM) (Department of Defense,
1996), which focused more on the infrastructure
and technical aspects of enterprise architecture.
TOGAF 8.1 eventually widened the scope of
TOGAF to feature business, data, and application
architectures more prominently. At the time of
writing, TOGAF 9 was the latest (current) edi-
tion (The Open Group, 2009). It includes major
enhancements over previous versions to better
address state-of-the-art concepts such as iterative
architecture development, SOA, specific security
architecture considerations, and capability-based
planning.

The main components and key concepts in
TOGAF 9 are (The Open Group, 2009):

• The Architecture Development Method
(ADM) is the core of TOGAF. It describes
a step-by-step approach to developing and
maintaining an enterprise architecture.

• The ADM guidelines and techniques com-
ponent contains a collection of blueprints,
recommendations, and best practices for
applying the ADM. Examples include ar-
chitectural principles, architectural pat-
terns, governance of SOA initiatives, and
migration planning techniques.

• The TOGAF architecture content frame-
work provides a meta-model for architec-
tural content that allows the major archi-
tectural artifacts to be consistently defined,
structured, and presented. An example
of such an artifact is a reusable architec-
ture building block (component) for audit
tracking that must be utilized for the devel-
opment of new business applications.

• Enterprise continuum and tools discusses
appropriate taxonomies and tools to cate-
gorize and store the outputs of architecture
activities within an enterprise and elabo-
rates the concept of an architecture reposi-
tory. The enterprise continuum supports a
very broad architectural scope, covering
generic IT system services such as trans-
action processing, information integration
architecture topics, industry-specific archi-
tectures like insurance or telecommunica-
tions architectures, and enterprise-specific
architectures. Thus, the enterprise contin-
uum can be seen as an “umbrella frame-
work” for the TOGAF architecture content
framework (which typically focuses on
enterprise-specific architectures).

• The TOGAF reference models component
introduces two fundamental architectural
reference models, namely the TOGAF

182

Decisions Required vs. Decisions Made

Technical Reference Model (TRM), which
provides a high-level taxonomy for the de-
scription of application software, applica-
tion platforms, and communications infra-
structures, and the Integrated Information
Infrastructure Reference Model (III-RM).
The III-RM is a reference model for appli-
cation components to support information
integration across domains (e.g. between
the sales and invoicing business units of an
enterprise).

• An architecture capability framework dis-
cusses the organization, processes, skills,
roles, and responsibilities required to es-
tablish and operate an architecture practice
within an enterprise.

As stated in Chapter 2.10 of TOGAF 9, many
TOGAF concepts, artifacts and deliverables
are generic in order to address a wide variety
of enterprises in different industries. TOGAF 9
therefore defines a specific process step for tailor-
ing (Chapter 6.4.5, Select and Tailor Architecture
Framework) (The Open Group, 2009). According
to our practical experience, TOGAF can be adapted
for many functional and technical domains, pro-
viding a great deal of flexibility. However, these
adaptation and tailoring capabilities require con-
siderable effort (to enhance and refine the TOGAF
framework for a specific enterprise).

Architecture Development Method

In contrast to many other enterprise architecture
frameworks, TOGAF provides the Architecture
Development Method (ADM) as its core compo-
nent. ADM provides a sound repeatable process
for developing architectures. According to Chapter
2.4 of TOGAF 9, this process includes activities
such as establishing an architecture framework,
developing architecture content, identifying
and prioritizing implementation projects, and
governing the realization of architectures (The

Open Group, 2009). An iterative and incremental
development style is explicitly promoted and
elaborated in Chapter 19 of TOGAF 9 (The Open
Group, 2009).

Figure 2 presents the eight ADM phases (as
well as a subset of the artifacts produced in these
phases):

A. Architecture Vision
B. Business Architecture
C. Information Systems Architecture
D. Technology Architecture
E. Opportunities and Solutions
F. Migration Planning
G. Implementation Governance
H. Architecture Change Management
J. Requirements Management

There is an additional preliminary phase which
describes the initial preparation and startup activi-
ties required to set up a new enterprise architecture
process; this phase is not shown in Figure 2. The
phases form a cycle (with requirements manage-
ment as a recurring phase across the entire cycle),
which typically is traversed in a highly iterative
manner. This cyclic organization of the phases
allows enterprise architects to frequently validate
(intermediate) results against the original expec-
tations and to introduce new requirements, both
on the level of the whole ADM cycle and on the
level of a particular phase.

Phase A focuses on scoping decisions regarding
the planned ADM cycle, on stakeholder identi-
fication, on validation of enterprise principles,
standards and guidelines, as well as on the devel-
opment of an architecture vision. In other words,
the business case for the ADM development cycle
is defined during this phase.

The phases B, C and D support the development
of the business, data, application and technology
architecture models. Ideally, traceability between
these architecture models and the general enter-
prise principles and strategies is pursued.

183

Decisions Required vs. Decisions Made

The phases E and F deal with the identifica-
tion and the planning of projects that support the
strategic requirements of the enterprise.

Once important projects from the perspective
of the enterprise requirements are defined, the
phase G specifies the governance activities for
these implementation projects. In this context,
the architecture contract is a key deliverable that
defines the responsibilities and obligations of both
a particular implementation project and the enter-
prise architecture group. It is discussed in more
detail the subsection of this chapter that discusses
architectural decisions in TOGAF (see below).

Phase H defines the architecture change
management processes required to keep the ar-
chitecture models current. For example, changes
to the business or technology environment or
lessons learned from implementation projects are

consolidated and requirements for architecture
model updates are defined.

TOGAF in Practice

Based on our personal experience with the adoption
of TOGAF in various enterprises, we identified a
number of recurring challenges. Fundamentally,
the ADM is a very useful instrument for establish-
ing the basis for an enterprise architecture manage-
ment process. It provides a process-oriented view
on the typical enterprise architecture activities
and defines essential artifacts (work products).
This process-oriented view makes the ADM as
well as the overall TOGAF framework tangible
and therefore eases their deployment. Moreover,
the process-oriented view increases the chances
of TOGAF for getting accepted by stakeholders

Figure 2. TOGAF ADM with key artifacts and phases (adapted from The Open Group, 2009)

184

Decisions Required vs. Decisions Made

such as business domain experts, data architects,
and application portfolio managers. However, the
rather generic documentation of the ADM and the
other key TOGAF components requires experi-
enced subject matter experts both for TOGAF as
well as for the specific application domain in order
to tailor and refine the framework for concrete
usage. The ADM has to be adapted and detailed
(just like the other key concepts, artifacts, and de-
liverables that are intended to be used in a specific
enterprise). In order to address these challenges,
we recommend conducting a series of TOGAF
Adoption Workshops (TAWs) involving all key
stakeholders. Key objectives of these workshops
are to agree on available and to be developed
architectural artifacts, on a common understand-
ing of the terminology, on the eligible methods,
and on a basic work breakdown structure for the
upcoming architecture development activities.

As already outlined in the introduction as an
integration/adoption issue, a general risk for the
acceptance of enterprise architecture guidelines is
that implementers may be reluctant to establish a
trust relationship with the enterprise architecture
staff. This is a fundamental conflict: enterprise
architects set guidelines and constrain projects
for the benefit of the whole enterprise; however,
projects often do not see the need for such guide-
lines and constraints because by definition they
have a much narrower scope. The classic function
of enterprise architecture as a strategic planning
tool works quite well in practice (a.k.a. upstream
enterprise architecture, with relatively coarse
models and focus on migration and transition
planning). These functions correspond to TOGAF
ADM phases E (opportunities and solutions) and
F (migration planning). However, the connection
to implementation programs (a.k.a. downstream
enterprise architecture) often does not work well
according to our experience: solution architects
and enterprise architects have difficulties to col-
laborate effectively, e.g., during ADM phase G.
As a consequence, enterprise architecture does not

produce the type of information (specifications)
that can be readily used by project teams (e.g.,
architecture and solution building blocks, easy-
to-use reference models, etc.). We outlined and
exemplified three of the most pressing collabora-
tion issues (i.e., availability, consumability, and
enforcement/acceptance issues) in the introduction
to this chapter.

Architectural Decisions in TOGAF

We experienced another challenge in our indus-
try projects: guidance is needed how to enforce
important architectural decisions on the imple-
mentation project level (to ensure consistency
with the enterprise architecture principles). In
chapter 41.5, TOGAF 9 promotes the management
of architectural decisions and proposes to use a
governance log to store architectural decisions:

[architectural] decisions made during projects
(such as standards deviations or the rationale for
a particular architectural approach) are important
to retain and access on an ongoing basis. […]
Having sight of the key architectural decisions
that shaped the initial implementation is highly
valuable, as it will highlight constraints that may
otherwise be obscured (The Open Group, 2009).

The governance log calls for capturing deci-
sions with rationale, but without any details when
and how to do this. This is where solution delivery
processes like RUP are supposed to step in on the
implementation project level. However, we are not
aware of any detailed advice in existing enterprise
architecture frameworks and software engineering
methods on the types of decisions that typically
must be made at a certain step in implementation
governance, let alone any guidance for the actual
implementation-level decision making.

Let us now have a look at the interfaces between
the two roles from a TOGAF ADM perspective.
The main interaction activities between enterprise

185

Decisions Required vs. Decisions Made

and solution architects occur during TOGAF ADM
Phase G (implementation governance). Chapter
15.4 of TOGAF defines phase G as the phase that

guides the implementation from an enterprise
architecture perspective. The enterprise archi-
tects have to provide architectural oversight for
the implementation and ensure that the imple-
mentation projects conform to the enterprise
architecture. Specifically, the implementation
governance phase defines activities and steps
to guide development of solutions deployment
and perform enterprise architecture compliance
reviews (The Open Group, 2009).

We believe that the enterprise architect should
not only follow this advice, but also coach and
support the solution architects throughout the
implementation project – if enterprise architects
only conduct reactive compliance reviews rather
late in the project, they might struggle to get
their review findings accepted as changes already
have become costly to implement. An early and
continuous involvement helps to ensure that the
architectural decisions in an implementation
project adhere to the enterprise-level directions
throughout the project; it may also serve as a reli-
able architectural frame that allows agile practices
to be applied during construction.

Architectural decisions on the implementation
project level that potentially impact the overall
enterprise architecture must be made in aware-
ness of enterprise-wide managerial and technical
directions. If such decisions are not carefully made,
business applications may become difficult to in-
tegrate with each other, or even worse, regulatory
standards may be violated (as illustrated by the
three exemplary design issues from the introduc-
tion). As mentioned previously, TOGAF therefore
defines the architecture contract deliverable to be
developed at the beginning of the implementation
governance phase. The architecture contract com-
prises an agreement between the implementation
project partners and the enterprise architects that

states the suitability of the developed solution
architectures and the project implementation de-
liverables. According to chapter 49.1 in TOGAF
9, this includes the adherence to the enterprise
principles, standards, and requirements of the
existing or developing solution architectures,
risk management procedures, and a set of pro-
cesses and practices that ensure proper usage and
development of all architectural artifacts (The
Open Group, 2009). For instance, the guiding
principles and constraints regarding the design
options chosen by the solution architect to solve
the three exemplary security design issues given
in the introduction to this chapter (dealing with
data classification and transport channel protec-
tion) could be summarized in such architecture
contract, providing rationale for option selections.

Enterprise Architecture in
the PQG Case Study

Let us assume that an enterprise architect was
appointed shortly after the takeover of Dirt
Cheap insurance. Having evaluated candidate
assets (mostly by screening by studying online
resources such as white papers from vendors,
consulting firms, and analysts, but also by issu-
ing a Request For Information (RFI) to several
architecture consulting firms and evaluating their
responses), he/she selects TOGAF as the archi-
tecture framework to steer the future evolution of
the application landscape at PQG. As a first step
towards TOGAF adoption, the ADM is tailored in
a TOGAF Adoption Workshop (TAW); this TAW
is organized with the help of services provided by
of one of the consulting firms that responded to the
RFI. Next, in ADM phase A (architecture vision)
the goals of the current ADM cycle are defined;
in the PQG case, this includes the development
of suitable architecture models to identify syner-
gies with the acquired IT systems from DirtCheap
Insurance and to assess information integration
opportunities. Infrastructure rationalization and
consolidation targets (in terms of required cost

186

Decisions Required vs. Decisions Made

saving figures per year) are also stated in the
architecture vision deliverables.

ADM phases B (business architecture), C (in-
formation systems architecture) and D (technology
architecture) are conducted next. In these phases,
the as-is and to-be architectures are elaborated to
the levels of detail that were agreed upon during
phase A. Figure 1 from the previous section (sys-
tem context and architecture overview diagram
for as-is enterprise application landscape) is an
output of phase C.

During the ADM phase E (opportunities and
solutions), gap analyses between the as-is and
to-be architectures are conducted and evaluated,
resulting in the identification of major shortcom-
ings in the customer enquiry processing of PQG.
As a consequence, a recommendation to the PQG
Chief Executive Officer (CEO) is made to launch
a strategic initiative that improves the customer
enquiry processing. The objectives of the initia-
tive are to improve customer service, measured by
the conversion rate (i.e., ratio between accepted
offers and enquiries processed), and to increase
profit by not making an offer if there is a high risk
of fraudulent claims. The CEO decides to launch
this initiative as it directly supports his business
strategy for PQG.

In the following ADM phase F (migration
planning) the enterprise architect proposes to
the Chief Information Officer (CIO) to launch an
application development and integration project,
with the goal to develop a new process-centric
Customer Enquiry System (CES) which reuses
logic from the existing systems to support the
strategic business initiative launched in phase E.
A lead solution architect for the CES project is
appointed, as well as business analysts, a project
manager, and a development team.

Let us assume that architectural principles
also have been established in the form that is
recommended by TOGAF: name-statement-
rationale-implications (The Open Group, 2009).
For instance, client data such as addresses and
accounting information is stored in the customer

database and processed by the customer care and
the contract management applications (see Figure
1); due to an architectural principle from phase
A that all sensitive data has to be secured, this
data is classified as Sensitive Personal Informa-
tion (SPI) that is valued as a strategic corporate
asset to be protected against tampering and loss
during transport.

RECURRING ARCHITECTURAL
DECISIONS AS DESIGN GUIDES

In the previous chapter we motivated the impor-
tance of architectural decisions from a TOGAF
perspective. Now we approach this topic from
an implementation project-centric point of view.

Background and Motivation

Architects make many decisions when creating
designs. Both classical and recent books on soft-
ware architecture (Bass, Clements, & Kazman,
2003; Rozanski & Woods, 2005; Eeles & Cripps,
2010) emphasize how important it is to get the
key decisions right. However, it is rather difficult
to generalize what the key decisions are, let alone
when and how to make them. Therefore, these
decisions are often made ad hoc. Architectural
knowledge management has become an impor-
tant research and development topic since 2004
(Kruchten, Lago, & van Vliet, 2006). For instance,
decision capturing templates have been published
(Tyree & Ackerman, 2005) and modeling tools
been prototyped (Ali Babar, Dingsøyr, Lago, &
van Vliet, 2009).

Architectural decisions have been character-
ized as a subset of design decisions that is archi-
tecturally significant (Eeles & Cripps, 2010), hard
to make (Fowler, 2003a], and costly to change
(Booch, 2009). The following definition adopts
these themes and adds several qualification heu-
ristics (Zimmermann, 2011):

187

Decisions Required vs. Decisions Made

Architectural decisions capture key design is-
sues and the rationale behind chosen solutions.
They are conscious design decisions concerning
a software-intensive system as a whole, or one
or more of the core components and connectors
of such system (in any given view). The outcome
of architectural decisions influences the non-
functional characteristics of the system such as
its software quality attributes.

According to this definition, architectural de-
cisions are made when selecting a programming
language, an architectural pattern, an application
container technology, or a middleware asset. For
instance, integration patterns such as Broker
discuss the many forces distributed systems are
confronted with, e.g., location independence
and networking issues (Buschmann, Henney, &
Schmidt, 2007); these forces qualify as decision
drivers. Hence, adding an EAI middleware that
implements the Broker pattern to an architecture
is an architectural decision that should be justi-
fied and documented in the governance log for
the project (see previous section).

Capturing decisions after-the-fact (i.e., retro-
spectively) has been recognized to be important
both by the enterprise architecture community
(The Open Group, 2009) and by the software
architecture community (Kruchten, 2003); how-
ever, many inhibitors such as lack of immediate
benefits also have been identified (Ali Babar,
Dingsøyr, Lago, & van Vliet, 2009). Relaxing one
assumption – documentation rigor – and making
a new one – multiple projects in an application
genre follow the same architectural style (i.e., they
share principles and patterns) – allows graduat-
ing architectural decisions from documentation
artifacts to design guides:

As an architect specializing on a particular appli-
cation genre and employing a certain architectural
style, I would like to know about the design issues
that I have to resolve and the solution options that
have been successfully applied by my peers when

they were confronted with these design issues –
what do they know that I don’t know?

After this repositioning from documentation
to design, recurring architectural decisions be-
come reusable assets just like methods and pat-
terns. Novel usage scenarios arise. For instance,
recurring issues may help to prioritize design
and development work items and may serve as
checklists during reviews. In this chapter, we
investigate how recurring architectural decisions
can improve communication between enterprise
architects and solution architects. As a first step,
let us now identify the architectural decisions
required in the case study.

Architectural Decisions in CES
Project at PQG (Case Study)

In the beginning of their architecture design work,
solution architects should select an appropriate
architectural style. Service-Oriented Architecture
(SOA) (Zimmermann, 2009) is a state-of-the-
art option; a more conservative alternative is to
develop three separate three-tier applications
(Fowler, 2003) (assuming that both styles have
been approved by the PQG enterprise architect).

Many follow-up design issues arise before
any of the two top-level design options can be
implemented:

Strategic Design Issues

Assuming that SOA is the preferred option, a par-
ticular SOA reference model should be selected,
which includes agreeing on terminology and
identifying relevant pattern languages, and setting
technology and product procurement direction.
The business strategy (e.g., planned mergers and
acquisitions, or divestitures and outsourcing) and
strategic IT principles (e.g., to prefer or ban open
source assets and to prefer certain software vendors
and server infrastructures) must be considered.
The architectural principles around security and

188

Decisions Required vs. Decisions Made

data privacy from the introduction to this chap-
ter belong to this category of requirements and
design constraints. Hence, design guidance from
the enterprise architecture level is particularly
appreciated in this context.

Conceptual Design Issues

Next, conceptual patterns must be selected and
adopted, decomposing the ones that define SOA
as an architectural style. All pattern components
have to be refined, e.g., the router capability that
is a core element of the Enterprise Service Bus
(ESB) pattern (Zimmermann, 2009). Functional
and non-functional requirements, business rules,
and legacy constraints influence the conceptual
design work.

In the CES case, the business analyst identified
customer care, contract, and risk management
services. It is now required to design service pro-
viders for these services. The granularity of the
service contracts in terms of number of service
operations and structure of request and response
messages must be decided. Once such service
contracts are in place, it becomes possible to
design service consumers.

The detailed design and configuration of the
ESB triggers another set of concerns: According
to the ESB definition in (Zimmermann, 2009),
message exchange patterns and formats, as well as
mediation, routing, and adapter patterns have to be
selected (or banned). In this pattern selection and
adoption process, format transformations, security
settings, service management (e.g., monitoring),
and communications transactionality must be
defined precisely.

The service composition design also must
be refined if this SOA pattern is selected. The
choice of a central process manager implement-
ing workflow concepts as opposed to distributed
state management in individual applications is an
important architectural concern (Zimmermann,
2009). Other key architecture design issues regard-
ing service composition are where to draw the line

between composed and atomic services, how to
interface with the presentation layer (in terms of
request correlation and coordination), and how to
integrate legacy workflows, e.g., those residing in
software packages. System transaction boundaries
and higher level error handling strategies such as
compensation handlers have to be defined as well.

Platform-Related Design Issues

Implementation technologies for the conceptual
patterns must be selected and profiled, for instance
WS-* technologies (Weerawarana, Curbera,
Leymann, Storey, & Ferguson, 2005) or other
integration technologies. Once technologies have
been chosen, implementation platforms must be
selected and configured. Many of the SOA pat-
terns are implemented in commercial or open
source middleware assets. It must be decided
whether middleware assets should be procured
and how the chosen ones should be installed and
configured. Performance, scalability, interoper-
ability, and portability are important types of
quality attributes when selecting and configur-
ing implementation platforms; enterprise-level
guidance regarding strategic vendor preferences
and software licensing policies helps to ensure
that the decisions made on different projects are
consistent with each other, that opportunities for
synergies are not missed (e.g., discounts), and
that unnecessary costs are avoided (e.g., hidden
integration effort introduced by incompatible
middleware products).

In summary, PQG has several architecture
alternatives to realize CES, including a) SOA
or b) three-tiered client-server applications inte-
grated via traditional EAI middleware. Making
this decision is only the start of the architecture
design; detailed design work follows. Numerous
design issues are encountered, which qualify as
architectural decisions. The design issues differ
substantially depending on the architectural style
and patterns chosen. Numerous forces influence
the decision making: Quality attributes in cat-

189

Decisions Required vs. Decisions Made

egories such as reliability, usability, efficiency
(performance, scalability), maintainability, and
portability drive the selection of architectural
style, the adoption of conceptual patterns, and
the design of their platform-specific refinements.
Many dependencies exist between the design
issues encountered on the CES project, but also
from and to those on other projects. Guidance
from the enterprise architect is desired.

SOA Decision (SOAD) Modeling

To give recurring architectural decisions a guiding
role during architecture design and implementa-
tion governance, related project experience has
to be captured and generalized in an effective and
efficient manner. This is a knowledge engineering
activity. SOA Decision Modeling (SOAD) (Zim-
mermann, Koehler, Leymann, Polley, & Schuster,
2009) is a knowledge management framework
that supports such an approach: SOAD provides a
technique to systematically identify the decisions
that recur when applying a certain architectural
style (such as SOA) in a particular application
genre (such as enterprise applications). SOAD en-
hances existing metamodels and templates (Tyree
& Ackerman, 2005; IBM Unified Method Frame-
work, 1998) to distinguish decisions required from
decisions made. Platform-independent decisions
are separated from platform-specific ones; the
alternatives in a conceptual model level reference
architectural patterns such as those presented in
(Buschmann, Henney, & Schmidt, 2007; Fowler,
2003, Hohpe & Woolf, 2004, Zdun, Hentrich, &
Dustdar, 2007). Decision dependency manage-
ment allows architects to check model consistency
and prune irrelevant decisions. A managed issue
list guides through the decision making process.
To update design artifacts according to deci-
sions made, decision outcome information can
be injected into design model transformations
(Zimmermann, 2011).

In support of reuse, the SOAD metamodel
defines two forms of models:

• Guidance models identifying decisions
required (formerly known as Reusable
Architectural Decision Models (RADMs)
(Zimmermann, 2009) and

• Decision models logging decisions made
(formerly known as architectural decision
models).

Figure 3 shows the relations and the internal
structure of these two types of models (Zimmer-
mann, 2009).

A guidance model is a reusable asset contain-
ing knowledge about architectural decisions re-
quired when applying an architectural style in a
particular application genre. An issue informs the
architect that a particular design problem exists
and that an architectural decision is required. It
presents types of decision drivers (e.g., quality
attributes and architectural principles) and refer-
ences potential design alternatives which solve
the issue along with their pros (advantages), cons
(disadvantages) and known uses (previous ap-
plications). It may also make a recommendation
about the alternative to be selected in a certain
requirements context. Issues and alternatives,
authored by a knowledge engineer, use the future
tense and a tone that a technical mentor would
choose in a personal conversation.

A guidance model captures architectural
knowledge from already completed projects
that employed the architectural style for which
the guidance model is created. Project-specific
decision models are created from such guidance
models in a tailoring step. Such a tailoring step
is conceptually similar to and inspired by method
tailoring and adoption activities (e.g., TOGAF
adoption as outlined in the previous section); it
might involve deleting irrelevant issues, enhanc-
ing relevant ones, and adding issues not included

190

Decisions Required vs. Decisions Made

in a guidance model. The guidance model does
not have a direct counterpart in TOGAF; it can
be seen as an additional artifact in the enterprise
continuum.

As shown in Figure 3, a decision model is an
architecture documentation artifact that contains
knowledge about architectural decisions required,
but also captures information about architectural
decisions made. A decision outcome is the record
(log) of a decision actually made on a project
and its justification. Outcomes can be viewed
as a form of design workshop minutes and are
therefore documented in present or past tense.
In a TOGAF context, such decision log forms an
important part of the governance log.

A decision model may reuse one or more guid-
ance models. Information about decisions made
can be fed back to the guidance model after project
closure via informal or formal lessons learned
reviews and/or asset harvesting activities. The
required updates to the guidance models can be
defined during ADM Phase H, architecture change
management. Such guidance model updates have
the objective to further improve the breadth, depth,
and quality of the architectural knowledge in the
enterprise continuum.

Decision Identification and
Knowledge Harvesting
Activities in SOAD

Guidance model creation activities are described
in detail in our previous work, e.g., in Chapter
5 and Appendix A of (Zimmermann, 2009) and
Chapter 12 of (Ali Babar, Dingsøyr, Lago, & van
Vliet, 2009). We will get back to these activities
later in the chapter in the context of the TOGAF
ADM and our proposed integration of SOAD
into TOGAF.

A particularly comprehensive result of our own
guidance modeling activities is a SOA guidance
model which comprises about 500 issues with
more than 2500 alternatives. The exemplary
SOA issues from the previous section (i.e., the
strategic design issues, conceptual design issues,
and platform-related design issues at PQG) ap-
pear in this guidance model in the form of issues
and alternatives. Figure 4 outlines the level and
layer organization of the guidance model for SOA
and positions a subset of the examples from the
CES case study as issues (boxes represent issues;
alternatives are highlighted by question marks).

Figure 3. Guidance model and decision model elements

191

Decisions Required vs. Decisions Made

The issues in the SOAD guidance model
originate from the author’s project experience,
input from practitioner communities, as well as
the literature; they are meant to be illustrative,
not normative here.

Guidance Model Tailoring and
Decision Making Processes in SOAD

The tailoring of one or more reusable guidance
model into the decision model for a project as
well as a macro and a micro process for decision
making based on guidance models are described
in Chapter 7 of (Zimmermann, 2009). We sum-
marize the essence of these two decision making
processes in the following subsections.

Macro Process (Project Level)

The SOAD macro process works with a managed
issue list (Zimmermann, 2009). We use the phases
from the IBM Unified Method Framework (UMF)
in this macro process. UMF (IBM Unified Method
Framework, 1998) comprises three design phases,
solution outline, macro design and micro design;
these phases correspond to the RUP phases RUP
inception, elaboration and construction. Figure 5
shows the activities to be conducted in these three
phases (Zimmermann, 2009).

The decision making context (Hofmeister,
Kruchten, Nord, Obbink, Ran., & America, 2007)
includes reference information, requirements
models, and documentation of the enterprise ar-
chitecture as well as existing systems, e.g., lega-
cy systems. The enterprise continuum in TOGAF
is an example of a repository of such context
information.

Figure 4. SOA guidance model (a.k.a. reusable architectural decision model)

192

Decisions Required vs. Decisions Made

The output of the macro process is the decision
log; it becomes part of the architecture documen-
tation. As explained previously, this decision log
becomes part of the TOGAF governance log.

Activity 1.1, 2.1, 3.1

Activities 1.1, 2.1, and 3.1 in our macro design
process deal with the retrieval of entry points
into the decision making. These activities can be
approached in multiple ways. Tacit knowledge or
external stakeholder input often guide the archi-
tect in the temporal ordering and prioritization of
decisions; when decision dependencies between
recurring issues are modeled, as suggested and
made possible by the SOAD metamodel, tools can

assist with this important scoping effort, which
defines the focus for the following architecture
design work (Zimmermann, 2009).

Activities 1.2, 2.2, 3.2

The second activity in each phase of our macro
process is a review activity conducted by the
architect. It includes a review of requirements
and architectural documentation already avail-
able in the decision making context. In solution
outline, the review includes legacy decisions (i.e.,
decisions made in another project or pertaining
to a different enterprise application). The other
project might have been a presales activity, the
development of a legacy system a long time ago,

Figure 5. SOAD macro process for decision making on projects

193

Decisions Required vs. Decisions Made

or an enterprise architecture project. The decisions
made in previous phases of the macro process are
also reviewed.

Activities 1.3, 2.3, 3.3

These activities deal with decision clustering.
Decisions are rarely made in isolation due to their
amount and due to the many dependencies between
them. However, it is not obvious how to group and
order the decisions that are eligible in a particular
macro process phase. Grouping decisions into
clusters is typically part of the tacit knowledge
of an architect; mature software engineering
and architecture design methods provide related
advice (Hofmeister, Kruchten, Nord, Obbink,
Ran., & America, 2007; Ran & Kuusela, 1996).
The actual grouping also depends on the project
setup (e.g., methods adopted, human resources
available) and on the architects’ experience and
personal preferences (bias). For instance, one of
the authors’ rules of thumb is “worst first” (with
worst being determined by negative consequences
regarding risk, cost, and flexibility).

A decision filtering concept as introduced in
Section 7.1 in (Zimmermann, 2009) can be lever-
aged in addition to tacit knowledge about decision
clustering. Due to the formalization of the SOAD
meta-model, tools can give clustering advice.
However, the architect drives the activity. In SOA
design, a tool might suggest to assign all issues
about an “ESB router” to be made in the “macro
design” phase to an “integration architect”. The
architect may decide to follow, refine, or overrule
this clustering (e.g., by splitting service consumer
and provider issues and assigning them to two
different integration architects).

Activities 1.4, 2.4, 3.4

These activities instruct the architect to make the
decisions that were classified to be eligible in the
respective phase. The micro process is launched
from this activity once per issue.

Activities 1.5, 2.5, 3.5

As the last activity on the macro level, the deci-
sion log is created or updated with the outcome
instances created during the execution of the micro
process. It becomes part of the project deliverables
and, consequently, the TOGAF governance log.

In essence, the managed issue list from SOAD
implements the architecture contract required
by TOGAF: open decisions form the part of the
architecture contract that has not been delivered/
satisfied yet (thus listing pending project obliga-
tions), whereas made decisions capture completed
parts of the contract.

Micro Process (Issue Level)

Figure 6 illustrates the SOAD micro process
(Zimmermann, 2009).

When performing the micro process activities,
architects make use of the architectural knowledge
in the guidance model and the decision model,
which both are structured according to the SOAD
metamodel, e.g., listing decision drivers and deci-
sion dependencies (see Figure 3).

Step A: Investigate Decision

As a first step, the information about an issue in
the ADM must be analyzed; the architects can add
missing information. In this step, the problem state-
ment, defined in the SOAD metamodel (Figure 3),
must be understood first; if the motivation for the
issue remains unclear, the referenced background
reading can be consulted (activity A.1).

Next, the decision driver attribute is studied
(activity A.2). Like the problem statement, it is
an issue attribute; it is reusable, but not project-
specific (unless information about actual require-
ments has been added during tailoring). Hence,
it can only list types of decision drivers. Still in
activity A.2, decision dependencies, particularly
those to and from already resolved issues (but
also open ones) are investigated.

194

Decisions Required vs. Decisions Made

The available alternatives have to be considered
next (activity A.3). The pros and cons informa-
tion is particularly relevant; when studying it, the
decision drivers and project requirements already
considered in A.1 and A.2 are revisited.

The final investigation activity A.4 is to review
and acknowledge the recommendation. This does
not mean that the recommendation should always
be followed. The global decision making context
(Figure 5) determines whether this is possible.

Step B: Make Decision

The second step of the micro process is the
actual decision making. In activity B.1, the ar-
chitect matches the actual requirements on the
project against the decision drivers (including
architectural principles) and decision dependen-
cies investigated in activity A.2. Both functional
requirements and Non-Functional Requirements

(NFRs) are taken into consideration. Activity
B.2 advises the architect to prioritize the deci-
sion drivers according to their importance and to
analyze potential conflicts and tradeoffs. Before
an alternative can be selected, both short term
and long term consequences (implications) must
be assessed. In many cases, an alternative which
may appear to be suited on the micro process level
cannot be selected due to certain constraints which
are only visible at the macro process or enterprise
architecture level (e.g., limitations of legacy
systems, existing operations and maintenance
procedures). Activity B.3 is to actually make the
decision, based on the insight gained during the
already completed step A and step B activities.

In Activity B.4, the chosen alternative and
the justification for the decision are documented
in outcomes. Decision drivers, pros and cons of
alternatives, and the recommendation should be

Figure 6. SOAD micro process for making single decision

195

Decisions Required vs. Decisions Made

referenced in the justification. The justification
should not only quote reusable background in-
formation such as the types of decision drivers
coming from the guidance model, but also refer
to actual project requirements (Zimmermann,
Schuster, & Eeles, 2008).

Step C: Enforce Decision

The third step of the micro process deals with
enforcing the decision. The three activities in this
step are to communicate the decision outcome
(Activity C.1), to review affected design model
elements and code (Activity C.2), and to compare
the behavior of the emerging implementations of
the system under construction with the decision
drivers and actual NFRs including project-specific
quality attributes (Activity C.3). It is necessary to
re-evaluate on the macro level, as decisions often
unveil their full consequences in combination
(e.g., decisions that have an impact on end-to-end
scalability of the system under construction and
on the system performance under heavy load from
concurrent users).

Termination of Macro
and Micro Process

Macro process and, in turn, micro process con-
tinue as long as architectural decision making
is still required. More than three phases can be
required. It may take a long time to complete the
decision making; the managed issue list can even
be continued to be used during system operations
and maintenance (Sommerville, 1995).

SOAD-Based Decision Making
in CES Project at PQG

We identified and informally presented selected
design issues in the CES project earlier in this
section; as discussed, they arise from the adop-
tion of SOA patterns such as service consumer-

provider contract, ESB, and service composition
(Zimmermann, 2009).

Figure 7 assigns a subset of these issues to
logical components in a SOA reference model; the
resulting SOA can be seen as an output of TOGAF
phase C, information system architecture. The
issues are shown as questions. Several of them
appear multiple times, e.g., those about the ESB
and those dealing with the three atomic services
(customer care service, contract service, and risk
management service). This is the case because the
respective patterns are applied multiple times in
the architecture.

The CES solution architect selects alternatives
resolving the open issues based on project-specific
requirements. During the SOA design and architec-
tural decision modeling activities, (s)he captures
the justifications for their decisions in outcomes,
which refer to issues.

Let us assume the CES project to be in the
macro design (elaboration) phase; several key
decisions have already been made and documented
during solution outline (inception). This becomes
apparent in Figure 7, e.g., a service composition
layer and two ESBs have already been introduced
in the architecture.

Table 1 gives more examples for decisions
already made, captured as outcomes; the table
content is the result of the macro and micro
decision making processes introduced in Figure
5 and Figure 6 earlier in this section. The issues
and alternatives come from the guidance model
for SOA. The sample justifications are specific
to the case, referring or paraphrasing PQG/CES
requirements.

Refining the previously made decisions, the
ones in the following Table 2 proceed from con-
ceptual to platform-specific design.

The table records the output of the partial
execution of one phase of the SOAD macro pro-
cess; each decision, captured in a single table row,
is the result of one execution of the SOAD micro
process.

196

Decisions Required vs. Decisions Made

Figure 7. Decision identification in PQG case study (Zimmermann, 2009)

Table 1. PQG case study: Architectural decisions made already

Resolved Issue Alternative Chosen as Outcome
(and Rejected Ones)

Examples of Justifications for Decisions Made for CES
(Rationale)

Architectural Style
(not shown in
Figure 7

SOA Messaging
File Transfer, Shared Database, RPC
(Hohpe & Woolf, 2004)

Strategic initiative, cross platform integration required and
desired, reliability needs

Layering (sketched
only in Figure 7)

Layers in SOA Reference Architecture
POEAA Layering (Fowler, 2003)) Defined by enterprise architecture team; no industry standard

Integration Paradigm eSB (Zimmermann, 2009)
Traditional EAI, Custom Code

Integration needs (legacy constraints identified in TOGAF
as-is models), service monitoring required

Service Composition
Paradigm

WorkfloW (leymann & Roller, 2000)
Human User, Object-Oriented Programming

Long running process, central process manager can preserve
integrity across channels (a related business rule has been
stated as an architectural principle in the business
architecture)

Service
Registry

None (UDDI, Vendor Products)
(Zimmermann, Tomlinson, & Peuser, 2003)

Only a few services, no business case for a registry yet
(according to output of TOGAF ADM phases A to F)

197

Decisions Required vs. Decisions Made

So far, we merely captured decisions already
made and their rationale. Table 3 lists additional
issues, this time issues still open at the current
project stage.

More comprehensive guidance modeling and
decision making examples are given in (Zim-
mermann, 2011), (Zimmermann, Koehler, Ley-
mann, Polley, & Schuster, 2009), and (Zimmer-
mann, 2009), as well as tutorials and other
presentation material from the SOAD project
(SOAD).

Enforcement of Decisions

In this step, the CES architects create reports about
decisions made: The outcome content of Table 1
and Table 2 is exported to a decision log which
becomes a part of the TOGAF governance log
for the CES project. This artifact is then shared
within the technical project team (e.g., other ar-
chitects, developers, and system administrators)
and other stakeholders (e.g., reviewers such as the
PQG enterprise architect). The made decisions are
executed, e.g., through procurement, installation,
and configuration of the selected BPel engine and
through BPEL and Java development activities.

Table 3. PQG case study: Architectural decisions still required

Open Issue Alternatives Decision Drivers (Guidance Model for SOA)

In Message Granularity

Dot Pattern
Dotted Line Pattern
Bar Pattern
Comb Pattern

Structure and amount of enterprise resources to be exchanged,
message verbosity, programming convenience and expressivity, change
friendliness

Operation-To-Service
Grouping

Single Operation
Multiple Operations Cohesion and coupling in terms of security context and versioning

Message Exchange
Pattern

One Way
Request-Reply Consumer semantics and availability needs, provider up times

Transport
Protocol
Binding

SOAP/HTTP
SOAP/JMS
Plain Old XML(POX)/ HTTP

Provider availability, data currency needs from consumer’s
perspective, systems management considerations

Invocation
Transactionality

Transaction Islands
Transaction Bridge
Stratified Stilts

Resource protection needs, legacy system interface capabilities,
process lifetime, enterprise-level guidelines regarding system
operations (e.g., regarding error handling and auditing/archiving policies)

Table 2. PQG case study: Architectural decisions made now

Resolved Issue Alternative Chosen as Outcome
(and Rejected Ones)

Examples of Justifications for Decisions Made for CES
(Rationale)

Integration Technology

WS-* Web Services (Zimmermann,
Tomlinson, & Peuser, 2003)
RESTful Integration (Pautasso,
Zimmermann, & Leymann, 2008))

Interoperability and standardization requirements (NFRs),
tool support

Workflow
Language

Business Process Execution Language
(BPEL)
(Proprietary Languages)

Standardized (to be preferred according to an architectural
principle), used by BPEL Engine selected (see below)

SOAP Engine IBM WebSphere (Apache Axis2) Comes with BPEL Engine

BPEL Engine
WebSphere Process Server
(Oracle BPEL Process Manager, Active
BPEL)

Operational procedures and enterprise license agreement
in place (executive decision before project start)

198

Decisions Required vs. Decisions Made

ARCHITECTURAL DECISION
MODELING AND MAKING IN TOGAF

In this section, we show how to overcome the
controversy and gap between enterprise architects
and solution architects, with an enterprise architect
leading guidance model creation and solution
architects contributing to them and using them
(continuous improvement cycle).

Issues, Controversies, Problems
in CES Project at PQG

The current status in the PQG case study is that
the enterprise architect, following the TOGAF
ADM, has established architectural principles and
defined the scope for the current ADM cycle in
phase A. He/she created as-is architecture models
providing an inventory of existing systems and
outlining to-be target architectures during the
architecture development phases B to D. The
output of the ADM phases E and F have triggered
the CES development project.

The CES solution architecture has to meet
specific project requirements to satisfy the CES
project sponsor and end users, but also to adhere
to the architectural principles established and
enforced by the PQG enterprise architect. Several
key decisions have already been made. A SOAD
guidance model was not available, all issues and
alternatives had to be documented by the solution
architect as part of the CES project. Many of the
decision outcomes referenced architectural prin-
ciples in their rationale (justification attribute).
This is a budget challenge for the individual
project; the connection to enterprise architecture
artifacts is not obvious and not tangible. More-
over, each project makes its decisions without
knowing about those on other projects (past or
present). Let us assume that a high-level SOA
reference model has been created, which defines
a layering scheme, but is not detailed enough for
project development work.

To overcome the outlined governance prob-
lems, the PQG enterprise architect initiates a
guidance model creation effort (project or work-
ing group), with the objective to make experience
with – and knowledge about – the consolidation
and modernization of enterprise applications
(specifically when using the SOA style) explicit
so that this knowledge can take an active guiding
role on projects like CES.

Extending TOGAF with SOAD
Guidance Modeling Concepts

This section presents the core contribution and
novelty of the chapter, an integration of the SOAD
concepts into TOGAF. Figure 8 illustrates our
overall integration approach by mapping TOGAF
ADM phases to SOAD guidance modeling and
decision making activities.

The primary integration point with several
intense interactions is TOGAF phase G, imple-
mentation governance. These interactions will be
covered in more detail later in the section.

Faithful to the iterative and incremental nature
of ADM, we introduce a continuous improvement
cycle:

1. Guidance Model Development (Creation
and Update): The enterprise architect pro-
vides a guidance model, with the objective to
support and promote the usage of enterprise
architecture models and guidelines (e.g.,
architectural principles) on the project level.

2. Guidance Model Usage, Decision Model
Creation and Review: The solution archi-
tect uses the guidance model to steer the
architecture design work on a project (e.g.,
when creating decision models/logs) and
provides feedback on the relevance and con-
sumability of the architectural knowledge
found in the guidance model. The enterprise
architect uses the decision model to review
the evolving implementation architecture for

199

Decisions Required vs. Decisions Made

general fitness (adequateness) and compli-
ance with the enterprise-level guidelines and
constraints.

3. Guidance Model Review: The enterprise
architect updates models and guidelines
accordingly (with additional input from the
solution architect community).

1. Guidance Model Development

The first integration point is guidance model cre-
ation (a.k.a. knowledge engineering or harvesting),
taking place (i.e., positioned and attached to) in
TOGAF phases B, C, and D. To realize this inte-
gration point (step), we propose a collaborative
approach (i.e., a series of fine grained interactions
between enterprise architects and solution archi-
tects). Figure 9 details this collaborative approach
in the form of a UML interaction diagram.

Key initial inputs to the guidance model cre-
ation work (i.e., the early scoping activities) are
architectural principles, enterprise architecture
models and artifacts, enterprise blueprints and
standards, reusable assets, and existing documen-
tation of architectural decisions from imple-
mented solutions. These inputs are ideally clas-
sified using a comprehensive taxonomy (e.g.,
based on the TOGAF content framework) and
obtained from the organization’s enterprise con-
tinuum.

Regarding depth and breadth of a guidance
model, its creators have a choice between making
comprehensive knowledge packs available and
lightweight approaches; a basic form of an initial
guidance model is a checklist with questions and
possible answers for solution architects, or a simple
decision tree such as the 10-node cloud buyer
guide from the Open Group (Open Group, 2010).

Figure 8. Guidance modeling and decision making in the ADM process in TOGAF

200

Decisions Required vs. Decisions Made

During the guidance model creation activities,
enterprise architects can start with an existing
guidance model such as the SOA one outlined in
the previous section. Possibly, it will be required
to add new levels and topic groups to adjust the
structure of the guidance model for a particular
enterprise. Certain fundamental issues in the
guidance model may be marked with a tag like
“enterprise architect involvement/review particu-
larly important and required” (e.g., the issues for
which guidance was requested in the first place,
those with severe long term consequences, e.g.,
regarding operations and maintenance, or those
with implications for multiple lines of business).

In a practical application of our TOGAF-
SOAD integration concepts, each of the interac-
tions can be supported by reusable assets such
as mail templates (e.g., callForGuidanceMod-

elInput, release), wiki pages (e.g., contribute),
and predefined/-populated questionnaires (e.g.,
requestGuidance). Furthermore, activity owners
and activity initiation triggers should be defined
to ensure timely and diligent execution.

See existing work (Zimmermann, 2009) and
previous section for additional information, e.g.,
about our experience with the review-integrate-
harden-align steps, shown as a single activity in
Figure 9.

2. Guidance Model Usage

Having covered the decision harvesting activities
(i.e., guidance model creation and review), the
following Figure 10 focuses on decision making
in TOGAF phase G (again in the form of a UML
interaction diagram).

Figure 9. Guidance model creation (knowledge harvesting in TOGAF phases B, C, and D)

201

Decisions Required vs. Decisions Made

The interactions in the figure detail the involve-
ment of the enterprise architect during the SOAD
macro and micro processes that we introduced in
the previous section.

If solution architecture requirements have to
be satisfied that require enterprise architecture
artifacts (models) that do not exist yet, guidance
modeling activities may be triggered (step 1).
More agile approaches may also be applied, e.g., a
temporary involvement of the enterprise architect
on the solution development project in the form
of architectural decision making workshops. The

minutes (protocols) of these workshops then may
serve as initial versions of future guidance models.

Our existing work and the previous section
provide additional information, e.g., about tailor-
ing (Zimmermann, 2009).

3. Guidance Model Review

The review activities have to be defined in detail
when implementing the interlock between the
enterprise architect and the solution architect. For
instance, it has to be specified whether regular

Figure 10. Decision making in TOGAF phase G (implementation governance)

202

Decisions Required vs. Decisions Made

proactive/periodic reviews and content update
cycles are planned.

We foresee a continuum of modes of opera-
tion and review rigor: two ends of the spectrum
are a conservative process with funded design
authorities and formal approvals on the one end
and an opportunistic approach solely relying
on volunteers (e.g., Web 2.0 crowd sourcing)
on the other end. The maturity of the owning
organization, amount of executive-level support
and budget, and company culture are among the
decision drivers for this design issue pertaining
to the guidance modeling process.

The interactions during an update step are
identical to those performed during guidance
model creation, resulting in a new version of the
guidance model (see Figure 9). During TOGAF
phase H, the requirements for guidance model
updates are consolidated. In the following phase
A of the next TOGAF cycle, such updates (or a
subset that addresses high-priority topics) may be
planned to be included this cycle. They may then
be implemented during the subsequent architecture
development phases B, C, and D.

Initial Guidance Model Content

We propose the following candidate issues for a
guidance model supporting decision making on
implementation projects:

• Design, adoption, and rollout of gover-
nance and design processes as well as
supporting notations and tools (e.g., UML
modeling versus architecture descrip-
tion language versus other domain-spe-
cific language, possibly different for each
stakeholder viewpoint (Küster, Völzer, &
Zimmermann (2011)). Refer to TOGAF
Chapter 48.3, architecture compliance re-
views (The Open Group, 2009).

• Top-level functional slicings of respon-
sibilities both in the organization and in

the IT systems, e.g., business domain con-
cept in SOA (Krafzig, Banke, & Slama,
2005) and strategic domain-driven design
(Landre, Wesenberg, & Rønneberg (2006).

• One particularly important topic group
is the question when to prefer build over
buy (e.g., to achieve a competitive advan-
tage or to avoid hidden, uncontrollable
integration efforts (Wesenberg, Landre, &
Rønneberg (2006)), even if a general archi-
tectural principle exists to prefer software
procurement and customization over cus-
tom development.

• Evaluation criteria for and selection of
software packages (typically per business
component or functional area) and SOA
middleware whose purchase implies sig-
nificant licensing cost and/or training and
operations effort (e.g., workflow engine,
enterprise service bus).

• Decisions about selection of open source
software as well as other reusable assets
(both private and public ones) and about
development of company-internal solution
building blocks.

• Information management decisions with
an impact on the degree to which a solution
adheres to relevant data privacy laws, au-
dit compliance rules and company-internal
security standards (see introduction to this
chapter for examples).

• Decisions on required refactorings of ex-
isting systems to match enterprise architec-
ture guidelines.

• For strategic system maintenance or en-
hancement projects, how to identify the
technical debt to be reduced (and how to
do so).

Note that the candidate issues are “TOGAF
ADM phase G-specific” decisions; decisions
about the enterprise architecture itself are not
included yet. The above collection does not aim

203

Decisions Required vs. Decisions Made

Table 4. PQG case study; exemplary mappings from TOGAF ADM phases to SOAD activities (by role)

TOGAF
Phase Role Activity (with Supporting Tools and Notations)

A
Enterprise architect (PQG) Establish first version of architectural principles

Solution architects (CES, other) Review architectural principles

B, C, D

Enterprise architect (PQG)
Scope guidance model (SOAD tool)
Call for guidance model input (via email to community, via wiki or other
social networking/collaboration tool)

Solution architects of existing applications
(customer care, contract management, risk
management)

Harvest decision logs from previous projects (review tool)
Contribute to guidance model (via template, via copy-paste)

Enterprise architect (PQG) Review, Integrate, Harden, Align (RIHA) (SOAD method and tool)
Inform solution architect about changes

Solution architect (existing applications)
Review RIHA updates
Revisit decision logs from projects
Provide feedback to enterprise architect

Enterprise architect (PQG) Incorporate review feedback
Release first/subsequent versions of SOA guidance model

E, F
Enterprise architect (PQG)

Identify potential projects that directly support the enterprise strategy
Create a high-level roadmap and project plan for those projects
Prioritize and select suitable projects
Plan and prepare adoption of SOAD method and tool for selected projects

Solution architects n/a

G

Solution architect (CES)

Create governance log (SOAD decision model)
Try to comply with architectural principles
Request guidance for strategic design issues, SOA pattern selection and
adoption, technology and product platform preferences
Select and tailor SOA guidance model (SOAD tool)
Pre-populate decision log with guidance model content
Request enterprise architect participation and ongoing reviews
Make and document decisions and maintain managed issue list (supported
by SOAD macro and micro process and supporting tool)
Update decisions according to review feedback (SOAD tool)
Enforce correct implementation of decisions made

Enterprise architect (PQG) Review governance log/decision model (ongoing)

Solution architect (CES) Request final review and approval (e.g., at the inception and elaboration
phase milestones of the implementation project (Kruchten, 2003)

Enterprise architect (PQG) Approve decisions

Solution architect (CES) Enforce and track resolution of review findings and reduce technical debt

H
Solution architect (CES) Provide feedback regarding use of guidance model and additional

architectural knowledge gained on CES project

Enterprise architect (PQG) Plan guidance model updates

204

Decisions Required vs. Decisions Made

at being complete; as a rule of thumb, all strate-
gic solution decisions that require involvement
of enterprise architects can/should be included
eventually. In fact, all executive decisions in the
taxonomy established by Kruchten, Lago and van
Vliet (Kruchten, Lago, & van Vliet, 2006) benefit
from enterprise-level decision making guidance.

Application of TOGAF-SOAD
Integration Concepts at
Premier Quotes Group

Table 4 lists the guidance modeling and decision
making activities at PQG per TOGAF phase. The
table also comments on notations and tools that
are suited for certain activities.

FUTURE RESEARCH DIRECTIONS

Architectural Decisions
and Agile Practices

An important area of future work is to investigate
architectural decision making in the context of
agile practices.

The literature on agile practices typically
focuses on process aspects (e.g., ceremonies in
Scrum (Sutherland) rather than design advice,
although the original article introducing Scrum
(Schwaber, 1995) mentions architecture work to
be a key part of the project start phase (happening
before any sprint). The notion of a sprint/iteration 0
has also been proposed (Ambler, 2009). However,
it remains unclear when and how to (pre-)populate
the decision backlog both for iteration 0 and for
following iterations. Lean software development
promotes the principle of deferring decisions un-
til the last responsible moment (Poppendieck &
Poppendieck, 2003); however, it remains unclear
when this moment has come.

In our previous work, we have developed the
notion of a managed issue list serving as a deci-
sion backlog (Zimmermann, 2009); this decision

backlog can also be seen as a particular subset of
the Scrum product backlog (featuring open design
issues as a new type of backlog entry). We envi-
sion the processing of a decision backlog to steer
the design work on implementation projects. Such
decision backlog can highlight and prioritize the
issues that have a particular relevance from an
enterprise architect perspective.

Recent work by Fairbanks is particularly rel-
evant the context of an agile governance log; he
suggests an architectural haiku, a short architecture
description specifically designed and compacted/
comprised for agile project teams (Fairbanks,
2011). The haiku provides a short and concise
syntax for capturing decision rationale:

<Driver-x> is a priority, so we chose design
<Alt-y>, accepting downside <Cons-z>

The variables x and z represent instances of
quality attributes or other decision drivers here,
including architectural principles; y combines
an issue with an alternative. We envision similar
Haikus, written in the future tense, to be suited
for the development of agile guidance models.

TOGAF Updates

One could also consider extending TOGAF to give
architectural decisions an even more prominent
place, similar to the overarching “über-phase”
requirements management in the center of the
ADM. Such effort would require significant
changes to the existing TOGAF practices and their
documentation and is therefore out our scope for
the time being.

TOGAF could also provide pre-populated
guidance models for particular domains such as
SOA or cloud computing. Such guidance models
could complement and accompany TOGAF refer-
ence models or reference architectures for these
architectural styles and technical domains; they
would fit into the TOGAF architecture content
framework as well as the enterprise continuum.

205

Decisions Required vs. Decisions Made

CONCLUSION

Architectural decisions make or break a project
– whether made consciously, subconsciously, or
by 3rd parties like technology thought leaders (or
software vendors). It is essential to identify, make,
and communicate the key ones adequately; their
rationale should be preserved. Capturing these
decisions after the fact is a labor-intensive under-
taking with many long-term, but few short-term
benefits. In practice, this important documentation
task is often neglected for this reason.

TOGAF is a state-of-the-art architecture
framework; an architecture development method,
a comprehensive collection of guidelines and
techniques and the concept of the enterprise con-
tinuum are three of its key components. Tailoring
TOGAF to provide tangible advice for solution
architects and other technical decision makers is
a challenge in practice. For instance, the structure
of the content of the governance log for phase G
(implementation governance) is not defined in
detail and no processes or tools for creating and
maintaining the log exist. Pre-defined governance
log content for certain architectural styles or tech-
nology domains such as SOA or cloud computing
does not exist either.

Many important decisions are encountered
and solved repeatedly on multiple projects; it is
therefore desirable to share related architectural
knowledge between these projects. Hence, our
previous SOAD work introduced guidance models
as reusable assets compiling the design issues
and options that will occur whenever a certain
architectural style is applied in an application
genre. SOAD was originally created to support
enterprise application and Service-Oriented Ar-
chitecture (SOA) design, but is also applicable to
other application genres and architectural styles.
In this chapter, we investigated how to use SOAD
as governance instrument to improve the com-
munication and knowledge exchange between
enterprise and solution architects. To support
this usage scenario, SOAD promotes the reuse of

architectural knowledge by compiling recurring
issues and options in guidance models.

The integration of SOAD into TOGAF that we
presented in this chapter can be summarized as:

• Both enterprise and solution architects
make decisions; solution architects expect
guidance regarding a subset of their deci-
sions from the enterprise architects. We
observed this situation repeatedly on proj-
ects in various industry sectors, including
financial services, telecommunications,
and automotive.

• Architectural principles are established
through a decision making process; once
they exist, they become decision drivers
and justifications for subsequent decisions.

• Guidance models may be created during
TOGAF phases B to D. As reusable assets,
the guidance models become part of the en-
terprise continuum. They are tailored into
decision models and then used in TOGAF
phase G (implementation governance).
Requirements for guidance model updates
are consolidated in phase H (architecture
change management).

• The SOAD decision log becomes an inte-
gral part of the TOGAF governance log;
decisions required and decisions made
(maintained in the managed issue list in
SOAD) form an important part of the ar-
chitecture contract between enterprise ar-
chitects and solution architects. The fulfill-
ment of this contract can be monitored by
observing the managed issue list and the
decision log.

• The macro and micro process for decision
making in SOAD is integrated into ADM
phase G (implementation governance);
UML interaction diagrams specify the col-
laborations between solution architects
and enterprise architects during these pro-
cesses and guidance model creation.

206

Decisions Required vs. Decisions Made

The result of a guidance modeling effort and
a SOAD-TOGAF integration effort is a guidance
model that serves as a “virtual enterprise architect”
preserving formerly tacit knowledge. This relieves
the real enterprise architects from routine work so
that they can focus on hard design problems – or
consider transitioning to implementation projects
or other assignments for a certain amount of time.

We developed and evaluated the presented
approach on real-world architecture consulting
engagements. On these engagements, certain limi-
tations of the presented approach became apparent.
These limitations can be categorized under 1) us-
age prerequisites, 2) motivation issues/potential
inhibitors and 3) guidance model maintenance.
As for 1), we assume familiarity with and use of
two rather rich and comprehensive assets, TOGAF
and SOAD. At least the motivation and budget for
training have to exist. Regarding 2), is has been
reported that many knowledge sharing systems
fail to work in practice because people feel threat-
ened to share their knowledge; hence, architects
have to be encouraged to share their knowledge
within their organizations. Personal incentives are
one way of doing so, e.g. tokens of appreciation
(such as informal of formal knowledge manage-
ment awards); ownership of or contributions to
guidance models may also become a criterion that
has to be met before an architect is promoted to
a higher level of seniority. 3) Defining and fund-
ing a sustainable approach to guidance model
management over time remains a challenge; for a
more detailed discussion and solution approaches
that address this governance challenge, we refer
the reader to our previous publications (Miksovic
& Zimmermann, 2011; Zimmermann, Koehler,
Leymann, Polley, & Schuster, 2009).

Our TOGAF-SOAD integration solution al-
lows enterprise architects and solution architects
to improve their communication and the knowl-
edge exchange between the two communities;
the availability, consumability, and enforcement/
acceptance issues that we observed in practice can
be resolved (or at least relieved and mitigated) this

way. The integrated approach allows enterprise
and solution architects to share best practices
recommendations in a problem-solution context:

We learn best from mistakes – but who said all
these mistakes have to be our own ones?

REFERENCES

Ali Babar, M., Dingsøyr, T., Lago, P., & van Vliet,
H. (2009). Software architecture knowledge man-
agement: Theory and practice. Springer-Verlag.
doi:10.1007/978-3-642-02374-3

Ambler, S. (2009). Agile model driven develop-
ment (AMDD): The key to scaling agile software
development. Essay available online.

Ambler, S., Nalbone, J., & Vizdos, M. (2009). The
enterprise unified process: Extending the rational
unified process. Prentice Hall.

Bass, L., Clements, P., & Kazman, R. (2003).
Software architecture in practice (2nd ed.). Ad-
dison Wesley.

Booch, G. (2009). AoT presentation. IBM internal.

Brown, N., Nord, R., & Ozkaya, I. (2011). Stra-
tegic management of technical debt. WICSA
2011 Tutorial.

Buschmann, F., Henney, K., & Schmidt, D. (2007).
Pattern-oriented software, Vol. 4 – A language for
distributed computing. Wiley.

Department of Defense. (1996). Technical archi-
tecture framework for information management
(Vol. 1).

Department of Defense. (2010). The DoDAF
architecture framework, Version 2.02, 2010.
Retrieved from http://cio-nii.defense.gov/ sites/
dodaf20/index.html

Eeles, P., & Cripps, P. (2010). The process of
software architecting. Addison-Wesley.

207

Decisions Required vs. Decisions Made

Fairbanks, G. (2011). Architecture Haiku. WICSA
2011 tutorial. Retrieved from http://rhinoresearch.
com/ files/Haiku-tutorial-2011-06-24- final.pdf

Fowler, M. (2003a). Patterns of enterprise ap-
plication architecture. Addison Wesley.

Fowler, M. (2003b). Who needs an architect? IEEE
Software, 20(5). doi:10.1109/MS.2003.1231144

Haischt, D., & Georg, F. (2010). Get me approved,
please! Lizenzkompatibilitaet von Open-Source
Komponenten. Objektspektrum, Sonderbeilage
Agilitaet, Winter 2010. SIGS Datacom.

Hofmeister, C., & Kruchten, P., Nord, Obbink,
J. H., Ran, A., & America, P. (2007). A general
model of software architecture design derived from
five industrial approaches. Journal of Systems
and Software, 80(1), 106–126. doi:10.1016/j.
jss.2006.05.024

Hohpe, G., & Woolf, B. (2004). Enterprise inte-
gration patterns. Addison Wesley.

IBM. (2009). Unified method framework: Work
product description ARC 0513 (Architectural
Decisions). IBM Corporation.

Julisch, K., Suter, C., Woitalla, T., & Zimmermann,
O. (2011). Compliance by design – Bridging
the chasm between auditors and IT architects.
Computers & Security, 30(6-7). doi:10.1016/j.
cose.2011.03.005

Krafzig, D., Banke, K., & Slama, D. (2005).
Enterprise SOA. Prentice Hall.

Kruchten, P. (2003). The rational unified process:
An introduction. Addison-Wesley.

Kruchten, P., Lago, P., & van Vliet, H. (2006).
Building up and reasoning about architectural
knowledge. Proceedings of QoSA 2006, LNCS
4214, (pp. 43-58). Springer.

Küster, J. M., Völzer, H., & Zimmermann, O.
(2011). Managing artifacts with a viewpoint-
realization level matrix. In Avgeriou, P., Grundy, J.,
Hall, J. G., Lago, P., & Mistrik, I. (Eds.), Relating
requirements and architectures. Springer-Verlag.
doi:10.1007/978-3-642-21001-3_15

Landre, E., Wesenberg, H., & Rønneberg, H.
(2006). Architectural improvement by use of
strategic level domain-driven design. OOPSLA
Companion. doi:10.1145/1176617.1176728

Leymann, F., & Roller, D. (2000). Production
workflow – Concepts and techniques. Prentice
Hall.

Miksovic, C., & Zimmermann, O. (2011) Ar-
chitecturally significant requirements, reference
architecture and metamodel for architectural
knowledge management in information technol-
ogy services. Journal of Systems and Software, 85
(9), 2014–2033, doi: http://dx.doi.org/10.1016/j.
jss.2012.05.003

Pautasso, C., Zimmermann, O., & Leymann, F.
(2008). RESTful web services vs. Big web ser-
vices: Making the right architectural decision.
Proceedings of WWW, 2008, 805–814. ACM.
doi:10.1145/1367497.1367606

Poppendieck, M., & Poppendieck, T. (2003). Lean
software development: An agile toolkit. Addison
Wesley.

Ran, A., & Kuusela, J. (1996). Design decision
trees. Proceedings of 8th International Workshop
on Software Specification and Design, Interna-
tional Workshop on Software Specifications &
Design, (pp. 172-175). IEEE Computer Society.

Rozanski, N., & Woods, E. (2005). Software sys-
tems architecture: Working with stakeholders us-
ing viewpoints and perspectives. Addison-Wesley.

208

Decisions Required vs. Decisions Made

Schwaber, K. (1995). Scrum development process.
Proceedings of OOPSLA’95 Workshop on Busi-
ness Object Design and Implementation.

Sommerville, I. (1995). Software engineering (5th
ed.). Addison Wesley.

Sowa, J. F., & Zachman, J. A. (1992). Extending
and formalizing the framework for information
systems architecture. IBM Systems Journal, 31(3),
590–616. doi:10.1147/sj.313.0590

Sutherland, J. (n.d.). Scrum blog. Retrieved from
http://scrum.jeffsutherland.com/

The Open Group. (2009). The Open Group ar-
chitecture framework, Version 9. Retrieved from
http://www.opengroup.org/togaf

The Open Group. (2010). Cloud buyers’ deci-
sion tree.

Tyree, J., & Ackerman, A. (2002). Architecture
decisions: Demystifying architecture. IEEE
Software, 22(2), 19–27. doi:10.1109/MS.2005.27

Weerawarana, S., Curbera, F., Leymann, F., Sto-
rey, T., & Ferguson, D. F. (2005). Web services
platform architecture. Prentice Hall.

Wesenberg, H., Landre, E., & Rønneberg, H.
(2006). Using domain-driven design to evalu-
ate commercial off-the-shelf software. OOPSLA
Companion. Retrieved from http://dblp.uni-trier.
de/ db/conf/oopsla/oopsla2006c.html - Wesenberg

Zdun U., Hentrich C., & Dustdar, S. (2007).
Modeling process-driven and service-oriented
architectures using patterns and pattern primitives.
ACM Transactions on the Web, 1(3).

Zimmermann, O. (2009). An architectural deci-
sion modeling framework for service-oriented
architecture design. PhD Thesis, University of
Stuttgart.

Zimmermann, O. (2011). Architectural decisions
as reusable design assets. IEEE Software, 28(1),
64–69. doi:10.1109/MS.2011.3

Zimmermann, O., Koehler, J., Leymann, F.,
Polley, R., & Schuster, N. (2009). Managing
architectural decision models with dependency
relations, integrity constraints, and production
rules. The Journal of Systems and Software and
Services, 82(8).

Zimmermann, O., Schuster, N., & Eeles, P. (2008).
Modeling and sharing architectural decisions,
Part 1: Concepts. IBM developerWorks.

Zimmermann, O., Tomlinson, M., & Peuser, S.
(2003). Perspectives on web services: Applying
SOAP, WSDL, and UDDI to real-world projects.
Springer Professional Computing.

